Сайт о холестерине. Болезни. Атеросклероз. Ожирение. Препараты. Питание

Знаменитые русские судебные ораторы Ораторы 19 века

Понятие «премия» и основания для ее выплаты Премия есть одной из самых

Волшебные ритуалы и обряды в полнолуние

Как распознать ведьму — признаки, предупреждающие зло Сумеречная ведьма какая она магия

Из чего производят инсулин

Эстрада ссср Советские эстрадные певцы 60х 70х годов

Государственный комитет по чрезвычайному положению Мнение бывших участников гкчп

Жареная треска на сковороде

Салат из кольраби: рецепт с яйцом и с майонезом (фото)

Готовим заливное из говядины: рецепт с фото

Сыр осетинский - описание пищевой ценности этого продукта с фото, его калорийность Сыр осетинский рецепт приготовления в домашних условиях

Пикантный салат украсьте

Рецепт с курагой Овсяные хлопья с изюмом рецепт

Международная номенклатура алканов

Обеспечение клеток энергией

Врожденные нарушения обмена аминокислот. Наследственные болезни аминокислотного обмена

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www . allbest . ru/

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

имени Н.Э. БАУМАНА

Факультет Биомедицинская техника

Кафедра Медико-технические информационные технологии

Самостоятельная работа

Заболевания, связанные с нарушениями метаболизма аминокислот и их биохимическая сущность

Студент: Пирожкова А.А. Группа:БМТ2-32

Руководитель: Ершов Ю.А.

Москва 2014

Понятие аминокислоты

Метаболизм аминокислот

Заболевания, связанные с нарушением метаболизма аминокислот

Заключение

Список литературы

Понятие аминокислоты

аминокислота метаболизм дезаминирование

Аминoкиcлоты -- важнейшие, а некоторые из них жизненно важные органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

В живых организмах аминокислоты выполняют множество функций. Они являются стpуктуpными элементами пептидов и белков, а так же других природных соединений. Для построения всех белков, будь то белки из самых древних линий бактерий или из высших организмов, используется один и тот же набор из 20 различных аминокислот, ковалентно связанных друг с другом в определенной, характерной только для данного белка последовательности. Поистине замечательное свойство клеток - это их способность соединять 20 аминокислот в различных комбинациях и последовательностях, в результате чего образуются пептиды и белки, обладающие совершенно разными свойствами и биологической активностью. Из одних и тех же строительных блоков разные организмы способны вырабатывать такие разнообразные продукты, как ферменты, гормоны, белок хрусталика глаза, перья, паутина, белки молока, антибиотики, ядовитые вещества грибов и многие другие соединения, наделенные специфической активностью. Также некоторые из aминoкиcлoт являются нейромедиаторами или предшественниками нейромедиаторов, медиаторов или гормонов.

Метаболизм аминокислот

Важнейшую и незаменимую роль в жизни организмов играет обмен аминокислот. Непротеиногенные aминoкиcлoты oбpaзyютcя в качестве прoмeжyточныx продуктов при биоcинтeзе и деградации протеиногенных аминокислот или в цикле мочевины. Кроме того, для животных и человека аминокислоты - строительные блоки белковых молекул - являются главными источниками органического азота, который используется, в первую очередь, для синтеза специфических организму белков и пептидов, а из них - азотсодержащих веществ небелковой природы (пуриновые и пиримидиновые основания, порфирины, гормоны и др.).

При необходимости аминокислоты могут служить источником энергии для организма, главным образом, за счет окисления их углеродного скелета.

Основные направления метаболизма аминокислот

Кажущееся постоянство химического состава живого организма поддерживается за счет равновесия между процессами синтеза и разрушения составляющих его компонентов, т.е. равновесия между катаболизмом и анаболизмом. В растущем организме такое равновесие смещено в сторону синтеза белков, т.е. анаболическая функция преобладает над катаболической. В организме взрослого человека в результате биосинтеза ежесуточно обновляется до 400 г белка. Причем, разные белки обновляются с различной скоростью - от нескольких минут до 10 и более суток, а такой белок, как коллаген, практически не обновляется за все время жизни организма. В целом период полураспада всех белков в организме человека составляет около 80 суток. Из них необратимо распадается примерно четвертая часть протеиногенных аминокислот (около 100 г.), которая должна возобновляться за счет белков пищи, остальные аминокислоты частично синтезируются организм.

При недостаточном поступлении белков с пищей организм использует белки одних тканей (печени, мышц, плазмы и др.) для направленного синтеза белков других жизненно важных органов и тканей: сердечной мышцы и т.д. Биосинтез белков осуществляется лишь при наличии в качестве исходных мономеров всех 20 природных аминокислот, причем каждой в нужном количестве. Длительное отсутствие и недостаточное поступление даже одной из 20 аминокислот приводит к необратимым изменениям в организме.

Белки и аминокислоты - это самые главные азотсодержащие соединения животных организмов - на их долю приходится более 95% биогенного азота. С обменом белков и аминокислот неразрывно связано понятие азотистого баланса (АБ), под которым понимают разницу между количеством азота, введенного в организм с пищей (Nввед) и количеством азота, выведенного из организма (Nвывед) в виде конечных продуктов азотистого обмена, преимущественно мочевины:

АБ = N введ - N вывед, [г·сутки -1 ]

При положительном азотистом балансе биосинтез белков преобладает над процессами их распада, т.е. из организма выводится меньше азота, чем поступает. Положительный азотистый баланс наблюдается в период роста организма, а также при выздоровлении после истощающих заболеваний. При отрицательном азотистом балансе распад белков преобладает над их синтезом, и азота из организма выводится больше, нежели поступает. Такое состояние возможно при старении организма, голодании и различных истощающих заболеваниях. В норме у практически здорового взрослого человека наблюдается азотистое равновесие, т.е. количество азота, введенного в организм, равно количеству выделенного. Нормы белка в питании при достижении азотистого равновесия составляют в среднем 100-120 г·сутки -1 .

Всасывание свободных аминокислот, образовавшихся в результате гидролиза белков, происходит, в основном, в тонком разделе кишечника. Данный процесс представляет собой активный транспорт молекул аминокислот, требующий энергии и зависящий от концентрации ионов Na+. Обнаружено более пяти специфических транспортных систем, каждая из которых переносит наиболее близкие по химическому строению аминокислоты. Разные аминокислоты могут конкурировать друг с другом за участки связывания на встроенных в мембрану транспортных белках (см. главу 15 настоящего Раздела). Таким образом, всосавшиеся аминокислоты в кишечнике попадают через портальную систему в печень, а затем поступают в кровь.

Дальнейший катаболизм аминокислот до конечных продуктов представляет собой совокупность реакций дезаминирования, трансаминирования и декарбоксилирования. При этом каждой индивидуальной аминокислоте соответствует свой специфический метаболический путь.

Дезаминирование/Трансдезаминирование/Декарбоксилирование

Дезаминирование - это отщепление аминогрупп от аминокислот с образованием аммиака. Именно с реакций дезаминирования чаще всего начинается катаболизм аминокислот. В живых организмах возможно четыре типа дезаминирования аминокислот.

Общим продуктом всех четырех типов дезаминирования является аммиак - довольно токсичное для клеток и тканей соединение, поэтому он подвергается обезвреживанию в организме (см. далее). В результате дезаминирования за счет «потерянных» в форме аммиака аминогрупп уменьшается суммарное количество аминокислот. Для большинства живых организмов, в том числе и человека, характерно окислительное дезаминирование аминокислот, в то время как другие типы дезаминирования встречаются только у некоторых микроорганизмов.

Окислительное дезаминирование L-аминокислот осуществляется оксидазами, присутствующими в печени и почках. Распространенным коферментом оксидазы L-аминокислот является ФМН, выполняющий роль переносчика водорода с аминокислоты на кислород. Суммарная реакция окислительного дезаминирования выглядит следующим образом:

R-CH(NH 2)-COOH + ФМН + H 2 O >

> R-CO-COOH + ФМНН 2 + NH 3 + Н 2 О 2

В ходе реакции образуется промежуточное соединение - иминокислота, которая затем гидратируется с образованием кетокислоты. Кроме кетокислоты и аммиака - как основных продуктов дезаминирования, в данной реакции образуется еще и пероксид водорода, который затем разлагается на воду и кислород при участии каталазы:

Н 2 О 2 > Н 2 О + ЅО 2

Окислительное дезаминирование, как самостоятельный процесс, играет незначительную роль в превращении аминогрупп аминокислот; с большой скоростью дезаминируется только глутаминовая кислота. Данную реакцию катализирует фермент глутаматдегидрогеназа, коферментом которой выступает NAD или NADH. Активность глутаматдегидрогеназы регулируется аллостерическими модификаторами, в роли ингибиторов выступают ГТФ и АТФ, а в роли активаторов - ГДФ и АДФ. Окислительное дезаминирование глутаминовой кислоты можно представить следующей схемой:

НООС-CH 2 -CH 2 -CH(NH 2)-COOH + NAD >

> НООС-CH 2 -CН 2 -СО-СOOH + NH3 + (NADH + Н+)

Данная реакция обратима, но в условиях живой клетки равновесие реакции смещено в сторону образования аммиака. Другие, не окислительные типы дезаминирования характерны для cерина, цистеина, треонина и гистидина. Остальные аминокислоты подвергаются трансдезаминированию.

Трансдезаминирование - это основной путь катаболического распада аминокислот. По названию процесса нетрудно догадаться, что он протекает в два этапа. Первый - трансаминирование, а второй - собственно окислительное дезаминирование аминокислоты. Трансаминирование катализируется ферментами аминотрансферазами, называемыми также просто трансаминазами. В качестве кофермента аминотрансферазы выступает пиридоксальфосфат (витамин В6). Суть трансаминирования состоит в переносе аминогруппы с б-aминокислоты на б-кетокислоту. Таким образом, реакция трансаминирования является межмолекулярным окислительно-восстановительным процессом, в котором участвуют атомы углерода не только взаимодействующих аминокислот, но и пиридоксальфосфата.

Декарбоксилирование - это процесс отщепления карбоксильной группы от аминокислоты в форме СО2. Декарбоксилированию в условиях живого организма могут подвергаться некоторые аминокислоты и их производные. Декарбоксилирование катализируется специальными ферментами - декарбоксилазами, коферментом которых (за исключением гистидиндекарбоксилазы) служит пиридоксальфосфат. Продуктами декарбоксилирования являются амины, обладающие биологической активностью - биогенные амины. К этой группе соединений принадлежат большинство нейромедиаторов и регуляторных факторов местного действия (тканевые медиаторы, регулирующие обмен веществ). Реакцию декарбоксилирования произвольной аминокислоты можно представить в следующем виде:

ДекарбоксилазаБиогенный амин

Образование биологически активных аминов

ГАМК - медиатор нервной системы (гамма-аминомасляная кислота).

Глутамат

Гистамин - медиатор воспаления, аллергических реакций.

ГистидинГистамин

Табл. Предшественники, химическое строение, биологическая роль биогенных аминов

Заболевания, связанные с нарушениями обмена аминокислот

Обмен веществ в организме - очень важный процесс. Любое отклонение от нормы может привести к ухудшению состояния здоровья человека. Различают наследственные и приобретенные нарушения обмена аминокислот. Наибольшая скорость обмена аминокислот наблюдается в нервной ткани. По этой причине в психоневрологической практике различные наследственные аминоацидопатии считаются одной из причин слабоумия.

Нарушение обмена тирозина.

Тирозин, помимо участи в синтезе белков, является предшественииком гормонов надпочечников адреналина, норадреналина, медиатора дофамина, гормонов щитовидной железы тироксины трийодтиронина, пигментов. Нарушение обмена тирозина многочисленны и называются тирозинемии.

Тирозинемия I типа.

Этиология.

Болезнь возникает при недостаточности фумарилацетоацетат-гидролазы. При этом накапливается фумарилацетоацетат и его метаболиты, поражающие печень и почки.

Фумарилацето-гидролаза

Клиническая картина.

Острая форма составляет большинство случаев заболевания с началом в возрасте 2-7 мес. и смертью 90% больных в возрасте 1-2 года из-за недостаточности печени.

При хронической форме болезнь развивается позднее, медленнее прогрессирует. Продолжительность жизни около 10 лет.

Основы лечения.

Лечение малоэффективно. Используется диета со снижением количества белка, фенилаланина и тирозина, инъекции глутатиона. Необходима трансплантации печени.

Тирозинемия 2 типа.

Гораздо более редкое заболевание.

Этиология.

Болезнь возникает при недостаточности тирозин-аминотрансферазы.

Клиническая картина.

Задержка умственного и физического развития, микроцефалия, катаракты и кератоз роговицы (псевдогерпетический кератит), гиперкератоз кожи, членовредительство, нарушение тонкой координации движений.

Эффективна диета с низким содержанием тирозина, при этом поражения кожи и роговицы быстро исчезают.

Тирозинемия новорожденных.

Этиология.

Тирозинемия новорожденных (тип 3) - результат недостаточности гидроксифенилпируват-гидроксилазы. Чаще наблюдается у недоношенных детей.

Клиническая картина.

Сниженная активность и летаргия. Аномалия считается безвредной. Дефицит аскорбиновой кислоты усиливает клиническую картину.

Основы лечения.

Диета со снижением количества белка, фенилаланина, тирозина и высокие дозы аскорбиновой кислоты.

Алкаптонурия.

Этиология.

Генетическая аутосомно-рецессивная энзимопатия. В основе заболевания лежит снижение активности печеночного фермента гомогентизат-оксидазы, в результате в организме накапливается гомогентизиновая кислота.

Клиническая картина.

Так гомогентизат на воздухе полимеризуется в меланиноподобное соединение, то наиболее частым и постоянным симптомом является темная моча, на пеленке и нажнем белье остаются темно-коричневые пятна. Другим образом в детском возрасте болезнь не проявляется.

С возрастом гомогентизиновая к-та накапливается в соединительно-тканных образованиях, склерах и коже, вызывает шиферно-глубокий оттенок ушного и носового хрящей, окрашивание участков одежды, потеющими участками тела (подмышки).

Одновременно гомогентизиновая к-та ингибирует лизилгидроксилазу, препятствуя синтезу коллагена, что делает хрупкими хрящевые образования. К пожилому возрасту наступает дегенеративный артроз позвоночника и крупных суставов, межпозвонковые пространства сужены.

Основы лечения.

Хотя эффективные способы неизвестны, по аналогии с другими аминокислотными нарушениями рекомендуется с раннего возраста ограничить потребление фенилаланина и тирозина, что должно препятствовать развитию охроноза и суставных нарушений. Назначают большие дозы аскорбиновой к-ты для защиты активности лизилоксидазы.

Альбинизм.

Этиология. Заболевание обусловлено полным или частичным дефектом синтеза фермента тирозиназы (частота 1:20000), необходимой для синтеза диоксифенилаланина в пигментных клетках.

Клиническая картина. При полном отсутствии фермента-тотальная делигментация кожи, волос, глаз, причем окраска одинакова для всех расовых групп и не меняется с возрастом. Кожа не загорает, совершенно отсутствуют невусы, пигментные пятна, развиваются фотодерматиты. Сильно выражены нистагм, светобоязнь, дневная слепота, красный зрачковый рефлекс. При частичной недостаточности отмечаются светло-желтые волосы, слабопигментированные родинки, очень светлая кожа.

Паркинсонизм.

Этиология. Причинной паркинсонизма (частота после 60 лет 1:200) является низкая активность тирозин-гидроксилазы или ДОФА-декабоксилазы в нервной ткани, при этом развивается дефицит нейромедиатора дофамина и накопление тирамина.

Клиническая картина.

Наиболее распространенными симптомами являются ригидность мышц, скованность движений, тремор и самопроизвольные движения.

Основы лечения.

Требуется систематическое введение лекарственных аналогов дофамина и применение ингибиторов моноаминоксидазы.

Фумарат Ацетоацетат

Фумарат ацетоацетат

Фенилкетонурия

Этиология. Дефицит фенилаланингидроксилазы. Фенилаланин превращается в фенилпируват.

Клиническая картина.

§ Нарушение миелинирования нервов

§ Маса мозку ниже нормы.

§ Умственное и физическое отставание.

Диагностические критерии:

§ уровень фенилаланина в крови.

§ FeCl3 тест.

§ пробы ДНК (пренатально).

Заключение

Значение аминокислот для организма в первую очередь определяется тем, что они используются для синтеза белков, метаболизм которых занимает особое место в процессах обмена веществ между организмом и внешней средой. Важную роль в координации работы всех систем клеток играют белковые гормоны. Обмен белков и аминокислот играет важнейшую и незаменимую роль в жизни организмов.

Список литературы

1. Ершов ЮА, Зайцева НИ. Основы биохимия для иженеров. МГТУ 2010

2. Ершов ЮА..соавт. Общая химия. М. 2011.

3. Белоусова Е.Д., Никанорова М.Ю. , Николаева Е.А. Наследственные болезни обмена веществ, проявляющиеся в периоде новорожденности// Российский вестник перинатологии и педиатрии, N6-2000, с.12-19

4. Ленинджер А. Основы биохимии. М. Мир. 1985. 1055 с.

5. Blau N, Duran M, Blascovich ME, Gibson KM (eds) Physician`s Guide to the Laboratory Diagnosis of Metabolic Diseases (second edition). New York: Springer, 1996

6. Николаев А. Я., Биологическая химия, М. «Медицинское информационное агентство», 2004 г.

7. Флорентьев В. Л., Биохимия. - М., 2004. - 464 с.

8. Березов Т.Т., Коровкин Б.Ф., Биологическая химия. М, Медицина,1998

9. Ершов Ю.А. и др. Общая химия. 8-е изд. М. ВШ. 2009. 560 с.

10. Ершов Ю.А. и др. Кинетика и термодинамика биохимических и физиологических процессов. М. Медицина. 1990. 208 с.

11. Кольман Я., Рем К.-Г. Наглядная биохимия. М., Мир, 2004. 269 с.

12. http://biomed.science.ulster.ac.uk/bmsri/-Metabolomics-and-Proteomics-Unit-.html

13. http://biokhimija.ru/lekcii-po-biohimii/21-matrichnye-biosintezy.html

14. Биохимия: Учеб. для вузов, Под ред. Е.С. Северина., 2003. 779 с. ISBN 5-9231-0254-4

15. Вельтищев Ю. Е., Казанцева Л. З., Семячкина А. Н. Наследственные болезни обмена веществ. В кн Наследственная патология человека П/ред. Вельтищев Ю. Е., Бочков Н. П. М. 1992, т. 1, с. 41-101.

16. Мусил Я., Новикова О., Кунц К. Современная биохимия в схемах: Пер. с англ.- 2-е изд., исправл.-М.: Мир, 1984.-216 с., ил.

Размещено на Allbest.ru

...

Подобные документы

    Определение класса аминокислот как гетерофункциональных соединений, которые содержат две функциональные группы (карбоксильную и аминогруппу), связанные с углеводородным радикалом. Классификация, изомерия, свойства, получение и применение аминокислот.

    презентация , добавлен 10.04.2013

    Физико-химические свойства аминокислот. Получение аминокислот в ходе гидролиза белков или как результат химических реакций. Ряд веществ, способных выполнять некоторые биологические функции аминокислот. Способность аминокислоты к поликонденсации.

    презентация , добавлен 22.05.2012

    Общая формула и характеристика аминокислот как производных кислот. Протеиногенные кислоты, входящие в состав белков. Классификация аминокислот по взаимному расположению и количеству функциональных групп. Физические и химические свойства аминокислот.

    презентация , добавлен 22.01.2012

    Общие пути обмена аминокислот. Значение и функции белков в организме. Нормы белка и его биологическая ценность. Источники и пути использования аминокислот. Азотистый баланс. Панкреатический сок. Переваривание сложных белков. Понятие трансаминирования.

    презентация , добавлен 05.10.2011

    Химические свойства и характеристика аминокислот, изомерия. Классификация стандартных a-аминокислот по R-группам и по функциональным группам. Кислотно-основное равновесие в растворе a-аминокислот. Использование нингидриновой реакции для их обнаружения.

    реферат , добавлен 22.03.2012

    Белки – высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Наследственная информация сосредоточена в молекуле ДНК. С помощью белков реализуется генетическая информация. Классификация аминокислот.

    реферат , добавлен 17.01.2009

    Роль аминокислот в жизнедеятельности организма человека. Сорта и химический состав яблок. Технология производства яблочного сока. Построение градуировочного графика. Методика определения аминокислот. Оптимизация условий проведения нингидриновой реакции.

    дипломная работа , добавлен 18.07.2014

    Характеристика необходимых алифатических и ароматических аминокислот, которые не могут быть синтезированы в организме человека. Пищевые источники валина, изолейцина, лейцина, лизина, метионина, трионина, триптофана и аргинина. Их роль в организме.

    презентация , добавлен 10.10.2016

    Классификация аминокислот и виды их изомерии. Химические свойства аминокислот, зависящие от наличия карбоксила, аминогруппы, совместного наличия карбоксильной и аминогруппы. Окислительно-восстановительные процессы, протекающие с участием кислот.

    реферат , добавлен 22.06.2010

    Биохимические свойства аминокислот - органических соединений, в молекулах которых один или несколько атомов водорода углеродной цепи замещены на группу -NH2. Аминокислоты как пищевая добавка. Аминокислотные препараты. Биологическая роль аминокислот.

Введение…………………………………………………………………………..3

1.Наследственные болезни обмена аминокислот………………………………4

2. Наследственные нарушения обмена аминокислот…………………………..5

3. Фенилкетонурия………………………………………………………………..6

4. Клинические симптомы у больных фенилкетонурией………………………8

5. Гомоцистинурия………………………………………………………………11

6. Гистидинемия…………………………………………………………………15

7. Наследственные нарушения обмена триптофана…………………………...17

8. Галактоземия…………………………………………………………………..19

9. Недостаточность лактазы…………………………………………………….22

10. Врожденные нарушения обмена гликогена………………………………..24

Заключение……………………………………………………………………….33

Список литературы………………………………………………………………34

Введение

В последние десятилетия научный прогресс в области клинической и молекулярной генетики, биохимии позволил выявить обширную группу “новых” болезней детского возраста, связанных с нарушением обмена веществ. Патологии обмена веществ у взрослых и детей могут быть обусловлены наследственными дефектами обмена нуклеиновых кислот, врожденной недостаточностью ферментов, отвечающих за синтез и распад аминокислот, нарушениями обмена органических кислот, дефицитом жирных кислот и др. Клинический диагноз врожденных нарушений обмена веществ может представлять определенные трудности. Одна из трудностей ранней диагностики заключается в том, что в период новорожденности у этих детей нет специфических расстройств, а поздние проявления фенотипически схожи с заболеваниями ненаследственного генеза. Вторая особенность состоит в том, что для наследственных заболеваний обмена веществ характерен клинический полиморфизм, обусловленный генетической гетерогенностью. Это объясняется наличием множественных изоаллельных мутаций и возможностью возникновения мутаций в разных генах.
Клинические проявления наследственных болезней обмена веществ во многом определяются поражением нервной системы (особенно при нарушениях обмена аминокислот, липидов и кислых гликозамино-гликанов), что в свою очередь, усиливает имеющиеся нарушения и усугубляет тяжесть клинических проявлений заболевания. Для диагностики наследственных болезней важен анализ неврологических симптомов, особенно на ранних стадиях развития, и разграничение их от фенокопий - заболеваний ненаследственной природы со сходной клинической картиной.

Наследственные болезни обмена аминокислот

Роль аминокислот для организма человека чрезвычайно велика. Аминокислоты являются основными структурными элементами белков, необходимы для синтеза иммуноглобулинов, гормонов, служат источником энергии. Каждый фермент или белок имеет специфические свойства и функции, которые определяют и регулируют сложные обменные процессы и развитие организма.

Часть аминокислот не может синтезироваться в организме человека. Это незаменимые аминокислоты: триптофан, фенилаланин, метионин, лизин, лейцин, изолейцин, валин и треонин. В детском возрасте к их числу относится гистидин, т.к. организм ребенка не может синтезировать эту аминокислоту в необходимых для нормального роста количествах. Клетки растущих тканей содержат аминокислоты в высоких концентрациях, что является свидетельством высокой интенсивности процессов транспорта аминокислот через клеточные мембраны.

Для обеспечения нормального роста и развития важно не только количество поступающих аминокислот, но и их соотношение. При избытке или недостатке аминокислот развиваются явления аминокислотного дисбаланса. Например, избыток лейцина в пище тормозит рост организма, метионина- вызывает токсическое поражение нервной системы, цистина- способствует развитию жировой инфильтрации печени.

Таким образом, нарушения метаболизма аминокислот приводят к нарушению нормального функционирования организма человека.

Наследственные нарушения обмена аминокислот

1. Наследственные нарушения обмена аминокислот, сопровождающиеся увеличением их концентрации в крови и моче: фенилкетонурия, гистидинемия, триптофанурия, болезнь "кленового сиропа", орнитинемия, цитруллинемия и др. Наследование, в основном, по аутосомно-рецессивному типу. В основе развития заболеваний лежит нарушение синтеза или структуры тех или иных ферментов.

2. Наследственные нарушения обмена аминокислот, сопровождающиеся увеличением их выделения с мочой без изменения уровня в крови: гомоцистинурия, гипофосфатазия и др. При данных энзимопатиях нарушено обратное всасывание в почках, что приводит к увеличению их содержания в моче.

3. Наследственные нарушения систем транспорта аминокислот: цистинурия, триптофанурия, болезнь Гартнепа и др. К этой группе относятся энзимопатии, развитие которых обусловлено снижением реабсорбции аминокислот в почках и кишечнике.

4. Вторичные гипераминоцидурии: синдром Фанкони, фруктоземия, галактоземия, болезнь Вильсона-Коновалова и др. При данных состояниях возникает вторичная генерализованная гипераминоацидурия в результате вторичных тубулярных нарушений.

Фенилкетонурия (ФКУ)

Впервые описана в 1934 г. Folling под названием "фенилпировиноградная имбецильность". Тип наследования - аутосомнорецессивный. Частота заболевания составляет 1:10000- 1:20000 новорожденных. Пренатальный диагноз возможен при использовании генетических зондов и биопсии ворсин хориона.
К развитию классической клинической картины при ФКУ приводит недостаточность фенилаланингидроксилазы и недостаточность редуктазы дигидроптерина- 2-го фермента, обеспечивающего гидроксилирование фенилаланина. Их недостаток приводит к накоплению фенилаланина (ФА) в жидких средах организма (схема 1). Как известно, ФА относится к незаменимым аминокислотам. Поступающий с продуктами питания и не используемый для синтеза белка, он распадается по тирозиновому пути. При ФКУ наблюдается ограничение превращения ФА в тирозин и, соответственно, ускорение его превращения в фенилпировиноградную кислоту и другие кетоновые кислоты.

Схема 1. Варианты нарушений метаболизма фенилаланина.

Существование различных клинико-биохимических вариантов ФКУ объясняется тем, что фенилаланингидроксилаза является частью мультиферментной системы.

Различают следующие формы ФКУ:

1.Классическая
2.Скрытая.
3.Атипичная.

Развитие атипичных и скрытых форм ФКУ связывают с недостаточностью фенилаланинтрансаминазы, тирозинтрансаминазы и оксидазы парагидроксифенилпировиноградной кислоты. Атипичная ФКУ обычно не сопровождается поражением нервной системы в результате позднего развития ферментативного дефекта.

У женщин с фенилкетонурией возможно рождение детей с микроцефалией, задержкой умственного развития, нарушениями развития мочевыделительной системы, поэтому необходимо назначение диетотерапии во время беременности.

Общее представление о нарушении белкового обмена можно получить при изучении азотистого равновесия организма и окружающей среды.

Нарушения азотистого равновесия

Нарушение азотистого равновесия проявляется в виде положительного или отрицательного азотистого баланса.

Положительный азотистый баланс - такое состояние, когда из организма выводится меньше азота, чем поступает с пищей. Наблюдается оно во время роста организма, при беременности, а также после голодания, при избыточной секреции анаболических гормонов (соматотропный гормон, андрогены и др.) и при назначении их с лечебной целью.



Анаболическое действие гормонов заключается в усилении процессов синтеза белка по сравнению с его распадом. Таким действием обладают следующие" гормоны.

Соматотропный гормон усиливает окисление жира и мобилизацию нейтрального жира и ведет, таким образом, к достаточному освобождению энергии, необходимой для процессов синтеза белка.

Половые гормоны усиливают процессы синтеза белка.

Инсулин облегчает переход аминокислот через клеточные мембраны внутрь клеток и, таким образом, способствует синтезу белка и ослабляет глюконеогенез. Недостаток инсулина ведет к снижению синтеза белка и к увеличению глюконеогенеза.

Отрицательный азотистый баланс - состояние, когда из организма выводится больше азота, чем поступает с пищей. Отрицательный азотистый баланс развивается при голодании, протеинурии, инфекционных заболеваниях, травмах, термических ожогах, хирургических операциях, при избыточной секреции или назначении катаболических гормонов (кортизол, тироксин и др.).

Катаболическое действие гормонов заключается в усилении процессов распада белков по сравнению с процессами синтеза. Таким действием обладают следующие гормоны.

Тироксин увеличивает количество активных сульфгидрильных групп в структуре некоторых ферментов - активируются тканевые катепсины и усиливается их протеолитическое действие. Тироксин повышает активность аминооксидаз - увеличивается дезаминирование некоторых аминокислот. При гипертиреозе у больных развивается отрицательный азотистый баланс и креатинурия.

При дефиците гормонов щитовидной железы, например при гипотиреозе, недостаточность катаболического действия гормона проявляется в виде положительного азотистого баланса и накопления креатина.

Глюкокортикоидные гормоны (кортизол и др.) усиливают распад белков. Расход белков увеличивается на нужды глюконеогенеза; при этом также замедляется синтез белка.

Обмен белков может быть нарушен на разных этапах превращений принятых с пищей белковых веществ. Можно выделить следующие нарушения:

  • 1) при поступлении, переваривании и всасывании белков в желудочно-кишечном тракте;
  • 2) при синтезе и распаде белков в клетках и тканях организма;
  • 3) при межуточном обмене аминокислот;
  • 4) на конечных этапах белкового обмена;
  • 5) в белковом составе плазмы крови.

Нарушения поступления, переваривания и всасывания белков в желудочно-кишечном тракте

Расстройства секреции отдельных протеолитических ферментов желудочного тракта, как правило, не вызывают серьезных нарушений белкового обмена. Так, полное прекращение секреции пепсина с желудочным соком не отражается на степени расщепления белков в кишечнике, но существенно влияет на скорость его расщепления и появления отдельных свободных аминокислот.

Отщепление отдельных аминокислот в желудочно-кишечном тракте происходит неравномерно. Так, тирозин и триптофан в норме отщепляются от белков уже в желудке, а другие аминокислоты - лишь под действием протеолитических ферментов кишечного сока. Состав аминокислот в содержимом кишечника в начале и конце кишечного переваривания различен.

Аминокислоты могут поступать в систему воротной вены в различном соотношении. Относительный дефицит даже одной незаменимой аминокислоты затрудняет весь процесс биосинтеза белков и создает относительный избыток других аминокислот с накоплением в организме промежуточных продуктов обмена этих аминокислот.

Подобные нарушения обмена, связанные с запаздыванием отщепления тирозина и триптофана, возникают при ахилии и субтотальной резекции желудка.

Нарушение всасывания аминокислот может возникнуть при патологических изменениях стенки тонкого кишечника, например при воспалении, отеке.

Нарушения синтеза и распада белка

Синтез белка происходит внутри клеток. Характер синтеза зависит от генетического набора на хромосомах в ядре клетки. Под воздействием генов, специфических для каждого вида белка в каждом организме, активируются ферменты, и в ядре клетки происходит синтез информационной рибонуклеиновой кислоты (и-РНК). и-РНК является зеркальной копией дезоксирибонуклеиновой кислоты (ДНК), находящейся в ядре клетки.

Синтез белка происходит в цитоплазме клетки на рибосомах. Под воздействием и-РНК на рибосомах синтезируется матричная РНК (м-РНК), которая является копией и-РНК и содержит закодированную информацию о виде и последовательности расположения аминокислот в молекуле синтезируемого белка.

Для включения аминокислот в молекулу белка в соответствии с матрицей (м-РНК) необходима их активация. Функция активации аминокислот выполняет фракция РНК, называемая растворимой, или транспортной (т-РНК). Активация аминокислот сопровождается их фосфорилированием. Присоединение аминокислот посредством т-РНК к определенным группировкам нуклеотидов м-РНК осуществляется при дефосфорилировании их за счет энергии гуанизинтрифосфата. Синтезированный белок выполняет специфическую функцию в клетке или транспортируется из клетки и выполняет свою функцию как белок крови, антитело, гормон, фермент.

Регуляция синтеза белка в клетке генетически обусловлена наличием не только структурных генов, ведающих последовательностью расположения оснований нуклеотидов при синтезе и-РНК, но и дополнительных регулирующих генов. В регуляции синтеза белка в клетке принимают участие еще по крайней мере два гена - ген-оператор и регулирующий ген.
Регулирующий ген ведает синтезом репрессора, который является ферментом и тормозит в конечном итоге деятельность структурных генов и образование и-РНК.
Ген-оператор, или оперирующий ген, непосредственно подчиняется действию репрессора, вызывающего в одном случае репрессию, а в другом - дерепрессию: появление синтеза ряда ферментов, синтезирующих и-РНК. Оперирующий ген составляет единое целое со структурными генами, образуя так называемый оперон.
Репрессивное вещество может находиться в двух состояниях: активном и неактивном. В активном состоянии репрессор действует на оперирующий ген, прекращает его воздействия на структурные гены и в конечном итоге прекращает синтез и-РНК и синтез белка.
Активаторы репрессора носят название корепрессоров. Ими могут быть как определенная концентрация регулируемого белка, так и факторы, образовавшиеся в результате действия этого белка.

Регуляция синтеза белка осуществляется следующим образом. При недостатке белка в клетке прекращается действие репрессора на оперон. Увеличивается синтез и-РНК и м-РНК. и на рибосомах начинается синтез белковых молекул. Концентрация белка увеличивается. Если синтезированный белок недостаточно быстро метаболизируется, его количество продолжает нарастать. Определенная концентрация этого белка, или факторов, образовавшихся под его действием, может служить корепрессором синтеза, активируя репрессор. Прекращается влияние оперирующего гена на структурные гены и прекращается в конечном итоге синтез белка. Его концентрация снижается и т. д.

При нарушении регуляции синтеза белка могут возникать патологические состояния, связанные как с избыточным синтезом, так и с недостаточным синтезом белка.

Синтез белка может быть нарушен под действием различных внешних и внутренних болезнетворных факторов:

  • а) при неполноценности аминокислотного состава белков;
  • б) при патологических мутациях генов, связанных как с появлением патогенных структурных генов, так и с отсутствием нормальных регулирующих и структурных генов;
  • в) при блокировании гуморальными факторами ферментов, ведающих процессами репрессии и дерепрессии синтеза белка в клетках;
  • г) при нарушении соотношения анаболических и катаболических факторов, регулирующих синтез белка.

Отсутствие в клетках даже одной незаменимой аминокислоты прекращает синтез белка.

Биосинтез белка может нарушаться не только при отсутствии отдельных незаменимых аминокислот, но и при нарушении соотношения между количеством незаменимых аминокислот, поступающих в организм. Потребность в отдельных незаменимых аминокислотах связана с их участием в синтезе гормонов, медиаторов, биологически активных веществ.

Недостаточное поступление в организм незаменимых аминокислот вызывает не только общие Нарушения синтеза белка, но и избирательно нарушает синтез отдельных белков. Недостаток незаменимой аминокислоты может сопровождаться характерными для нее нарушениями.

Триптофан . При длительном исключении из пищевого рациона у крыс развивается васкуляризация роговицы и катаракта. У детей ограничение триптофана в пище сопровождается снижением концентрации плазменных белков.

Лизин . Отсутствие в пище сопровождается у людей появлением тошноты, головокружения, головной боли и повышенной чувствительности к шуму.

Аргинин . Отсутствие в пище может привести к угнетению сперматогенеза.

Лейцин . Относительный избыток его по сравнению с другими незаменимыми аминокислотами у крыс угнетает рост из-за соответствующего нарушения усвоения изолейцина.

Гистидин . Недостаток его сопровождается снижением концентрации гемоглобина.

Метионин . Исключение его из пищи сопровождается жировым перерождением печени, обусловленным недостатком лабильных метильных групп для синтеза лецитина.

Валин . Недостаток его ведет к задержке роста, похуданию, развитию кератозов.

Заменимые аминокислоты существенно влияют на потребность в незаменимых аминокислотах. Например, потребность в метионине определяется содержанием цистина в диете. Чем больше в пище цистина, тем меньше расходуется метионина для биологического синтеза цистина. Если в организме скорость синтеза заменимой аминокислоты становится недостаточной, появляется повышенная потребность в ней.

Некоторые заменимые аминокислоты становятся незаменимыми, если они не поступают с пищей, так как организм не справляется с быстрым их синтезом. Так, недостаток цистина ведет к торможению роста клеток даже при наличии всех остальных аминокислот в среде.

Нарушения регуляции синтеза белка - антител - может наблюдаться при некоторых аллергических заболеваниях. Так, в иммунокомпетентных клетках (клетки лимфоидного ряда), продуцирующих антитела, обычно репрессирована выработка аутоантител. В процессе эмбрионального развития при смене фаз (стадия нервной трубки, листков мезенхимы) происходит дерепрессия синтеза аутоантител. В тканях определяются аутоантитела, которые участвуют в рассасывании тканей прежних фаз развития эмбриона. Такая смена активности репрессоров происходит несколько раз. Во взрослом организме синтез аутоантител репрессирован. Так, например, репрессирован синтез аутоантител к антигенам собственных эритроцитов. Если, в зависимости от группы крови в эритроцитах находится агглютининоген А, то в плазме крови отсутствуют α-агглютинины, выработка которых надежно репрессирована. На этой основе возможна трансплантация крови и кроветворной ткани (костного мозга).

К некоторым тканям (хрусталик глаза, нервная ткань, тестикулы) выработка аутоантител не репрессирована, но эти ткани в силу своих анатомических и функциональных особенностей изолированы от иммунокомпетентных клеток и в норме выработки аутоантител не происходит. При нарушении анатомической изоляции (повреждение) начинается выработка аутоантител и возникают аутоаллергические заболевания.

Нарушения обмена аминокислот

Нарушения дезаминирования . Окислительное дезаминирование осуществляется в результате последовательных превращений аминокислот в реакциях переаминирования и дезаминирования:

Аминокислоты при участии специфических трансаминаз вначале переаминируются с α-кетоглютаровой кислотой. Образуется кетокислота и глютамат. Глютамат под действием дегидрогеназы подвергается окислительному дезаминированию с освобождением аммиака и образованием α-кетоглютарата. Реакции обратимы. Таким образом образуются новые аминокислоты. Включение а-кетоглютаровой кислоты в цикл Кребса обеспечивает включение аминокислот в энергетический обмен. Окислительное дезаминирование определяет и образование конечных продуктов белкового обмена.

С переаминированием связано образование аминосахаров, порфиринов, креатина и дезаминирование аминокислот. Нарушение переаминирования возникает при недостатке витамина В6, так как его форма - фосфопиридоксаль - является активной группой трансаминаз.

Соотношение субстратов переаминирования определяет направление реакции. При нарушении мочевинообразования происходит ускорение переаминирования.

Ослабление дезаминирования возникает при снижении активности ферментов - аминооксидаз и при нарушении окислительных процессов (гипоксия, гиповитаминозы С, РР, В 2).

При нарушении дезаминирования аминокислот увеличивается выделение аминокислот с мочой (аминоацидурия), уменьшается мочевинообразование.

Нарушения декарбоксилирования . Декарбоксилирование аминокислот сопровождается выделением СО 2 и образованием биогенных аминов:

В животном организме декарбоксилированию подвергаются лишь некоторые аминокислоты с образованием биогенных аминов: гистидин (гистамин), тирозин (тирамин), 5-гидрокситриптофан (серотонин), глютаминовая кислота (γ-аминомасляная кислота) и продукты дальнейших превращений тирозина и цистина: 3,4-диоксифенилаланин (ДОФА, окситирамин) и цистеиновая кислота (таурин) (рис. 47).

Биогенные амины проявляют свое действие уже при малых концентрациях. Накопление аминов в больших концентрациях представляет серьезную опасность для организма. В нормальных условиях амины быстро устраняются под действием аминоксидазы, которая окисляет их в альдегиды:

При этой реакции образуется свободный аммиак. Инактивация аминов достигается также путем их связывания с белками.

Накопление биогенных аминов в тканях и крови и проявление их токсического действия возникает; при усилении активности декарбоксилаз, торможении активности оксидаз и нарушении связывания их с белками.

При патологических процессах, сопровождающихся угнетением окислительного дезаминирования, превращение аминокислот в большей степени происходит путем декарбоксилирования с накоплением биогенных аминов.

Нарушения обмена отдельных аминокислот . Существует ряд наследственных заболеваний человека, связанных с врожденными дефектами обмена отдельных аминокислот. Эти нарушения обмена аминокислот связаны с генетически обусловленным нарушением синтеза белковых групп ферментов, осуществляющих превращения аминокислот (табл. 24).

Нарушения обмена фенилаланина (фенилкетонурия) . Причиной заболевания является недостаток фермента - фенилаланингидроксилазы в печени, вследствие чего блокировано превращение фенилаланина в тирозин (рис. 48). Концентрация фенилаланина в крови достигает 20-60 мг% (в норме около 1,5 мг%). Продукты его, метаболизма, в частности кетокислота - фенилпируват, оказывают токсическое воздействие на нервную систему. Нервные клетки коры головного мозга разрушаются и замещаются разрастанием микроглиальных элементов. Развивается фенилпировиноградная олигофрения. Фенилпируват появляется в моче и дает зеленую окраску с трихлорным железом. Эта реакция проводится у новорожденных и служит для ранней диагностики фенилкетонурии.

При развитии заболевания уже в 6-месячном возрасте у ребенка отмечаются признаки недостаточного умственного развития, просветление цвета кожи и волос, общее возбуждение, усиление рефлексов, повышение тонуса мышц и основного обмена, эпилепсия, микроцефалия и др.

Просветление цвета кожи и волос развивается из-за недостаточной выработки меланина, так как в результате накопления фенилаланина блокируется метаболизм тирозина.

Развивается недостаточность синтеза катехоламинов, снижается уровень других свободных аминокислот в плазме крови. Увеличивается выделение кетоновых тел с мочой.

Исключение фенилаланина из диеты ведет к снижению содержания фенилаланина и его производных в крови и препятствует развитию фенил-кетонурии.

Нарушение обмена гомогентизиновой кислоты (продукта метаболизма тирозина) - алкаптонурия - возникает при недостатке фермента - оксидазы гомогентизиновой кислоты (рис. 49).

При этом гомогентизиновая кислота не переходит в малеилацетоуксусную кислоту (не происходит разрыва гидрохинонового кольца). В нормальных условиях гомогентизиновая кислота в крови не определяется. При недостаточности фермента гомогентизиновая кислота появляется в крови и выводится из организма с мочой. Отмечается характерное потемнение мочи, особенно в щелочной среде.

Отложение производных гомогентизиновой кислоты в тканях вызывает пигментацию соединительной ткани - охроноз. Пигмент откладывается в суставных хрящах, в хрящах носа, ушных раковинах, в эндокарде, крупных кровеносных сосудах, почках, легких, в эпидермисе. Алкаптонурии часто сопутствует почечнокаменная болезнь.

Нарушение обмена тирозина - альбинизм . Причиной заболевания является недостаток фермента тирозиназы в меланоцитах - клетках, синтезирующих пигмент меланин (рис. 50).

При отсутствии меланина кожа приобретает молочно-белый цвете белесым оволосением (альбинизм), наблюдаются светобоязнь, нистагм, просвечивание радужной оболочки, снижение остроты зрения. Солнечное облучение вызывает воспалительные изменения кожи - эритему.

Альбинизм может сопровождаться глухотой, немотой, эпилепсией, полидактилией и олигофренией. Интеллект таких больных чаще нормальный.

Нарушения обмена гистидина . Мастоцитоз - наследственная болезнь, сопровождаемая усиленной пролиферацией тучных клеток. Причиной заболевания считают повышение активности гистидинде-карбоксилазы - фермента, катализирующего синтез гистамина. Гистамин накапливается в печени, селезенке и других органах. Болезнь характеризуется поражениями кожи, Нарушениями сердечной деятельности и функции желудочно-кишечного тракта. Отмечается повышенная экскреция с мочой гистамина.

Гипераминацидурии . Возникают при нарушении реабсорбции аминокислот в почечных канальцах (почечная гипераминоацидурия, например цистиноз, цистинурия) или при увеличении концентрации аминокислот в крови (внепочечная гипераминоацидурия, например фенилкетонурия, цистатионурия).

Цистиноз . Наблюдается при врожденном дефекте реабсорбции в канальцах почек цистина, цистеина и других нециклических аминокислот. Экскреция аминокислот с мочой может увеличиваться при этом в 10 раз. Экскреция цистина и цистеина возрастает в 20-30 раз. Цистин откладывается в почках, селезенке, коже, печени. Цистиноз сопровождается глюкозурией, гиперкалиурией, протеинурией и полиурией.

При цистинурии экскреция цистина может увеличиваться до 50 раз по сравнению с нормой, сопровождаясь угнетением реабсорбции лизина, аргинина и орнитина в почечных канальца^. Уровень цистина в крови не превышает нормы. Не обнаружено нарушений в межуточном обмене этих аминокислот. Повышенная экскреция аминокислот может привести к нарушениям синтеза белка и белковой недостаточности.

Нарушения конечных этапов белкового обмена

Нарушения мочевинообразования. Конечными продуктами распада аминокислот являются аммиак, мочевина, СО 2 и Н 2 О. Аммиак образуется во всех тканях в результате дезаминирования аминокислот. Аммиак токсичен, при его накоплении повреждается протоплазма клеток. Для связывания аммиака и его обезвреживания существуют два механизма: в печени образуется мочевина, а в других тканях аммиак присоединяется к глютаминовой кислоте (амидирование) - образуется глютамин. В дальнейшем глютамин отдает аммиак для синтеза новых аминокислот, превращения которых завершаются образованием мочевины, выделяемой с мочой. Из всего азота мочи на долю мочевины приходится 90% (аммиака около 6%).

Синтез мочевины происходит в печени в цитруллинаргининорнитиновым цикле (рис. 51). Существуют заболевания, связанные с наследственным дефектом ферментов мочевинообразования.

Аргининсукцинатурия . Заключается в гипераминоацидурии (аргининоянтарная кислота) и в олигофрении. Причина - дефект фермента аргининосукцинатлиазы.

Аммонийемия . В крови увеличена концентрация аммиака. Повышена экскреция глютамина с мочой. Причина заболевания - блокирование карбамилфосфатсинтетазы и орнитинкарбамоилтрансферазы, катализирующих связывание аммиака и образование орнитина в цикле мочевинообразования.

Цитруллинурия . Концентрация цитруллина в крови может увеличиваться сверх нормы в 50 раз. С мочой экскретируется до 15 г цитруллина в сутки. Причина - наследственный дефект аргининсукцинат-синтетазы.

Активность ферментов синтеза мочевины нарушается и при заболеваниях печени (гепатиты, застойный цирроз), гипопротеинемиях, угнетении окислительного фосфорилирования. В крови и тканях накапливается аммиак - развивается аммонийная интоксикация.

Наиболее чувствительны к избытку аммиака клетки нервной системы. Кроме непосредственного повреждающего действия аммиака на нервные клетки, аммиак связывается глютаматом, в результате чего он выключается из обмена. При ускорении переаминирования аминокислот с α-кето-глютаровой кислотой, она не включается в цикл Кребса, ограничивается окисление пировиноградной и уксусной кислот и они превращаются в кетоновые тела. Снижается потребление кислорода. Развивается коматозное состояние.

Нарушения обмена мочевой кислоты . Подагра. Мочевая кислота - конечный продукт обмена аминопуринов (аденин и гуанин) у человека. У рептилий и птиц мочевая кислота является конечным продуктом обмена всех азотистых соединений. В крови у человека обычно содержится 4 мг% мочевой кислоты. При избыточном потреблении продуктов, богатых пуриновыми нуклеотидами и аминокислотами, из которых в организме синтезируются пуриновые основания (печень, почки), в организме увеличивается количество мочевой кислоты. Концентрация ее возрастает также при нефритах, лейкемиях. Возникает гиперурекемия.

Иногда гиперурекемия сопровождается отложением солей мочевой кислоты в хрящах, сухожильных влагалищах, ночках, коже и мышцах, так как мочевая кислота плохо растворима. Вокруг отложений кристаллических уратов возникает воспаление - создается грануляционный вал, окружающий омертвевшие ткани, образуются подагрические узлы. Урекемия может сопровождаться выпадением солей мочевой кислоты в мочевых путях с образованием конкрементов.

Патогенез подагры не ясен. Предполагают, что заболевание носит наследственный характер и связано с нарушением факторов, поддерживающих мочевую кислоту в растворимом состоянии. Эти факторы связаны с обменом мукополисахаридов и мукопротеидов, которые образуют центр кристаллизации. При нарушении функции печени (интоксикация) увеличивается отложение уратов в тканях и выделение уратов с мочой.

Нарушения белкового состава крови

Гипопротеинемия - уменьшение общего количества белка в крови, возникающее главным образом за счет уменьшения альбуминов.

В механизме возникновения гипопротеинемии основными патогенетическими факторами являются приобретенные ими наследственно обусловленные нарушения синтеза белков крови, выход сывороточных белков из кровеносного русла без последующего возврата в сосуды и разжижение крови.

Нарушения синтеза белков крови зависят от ослабления синтетических процессов в организме (голодание, нарушение усвоения пищевых белков, авитаминозы, истощение организма вследствие длительной инфекционной интоксикации или злокачественных новообразований и пр.).

Синтез белков крови может снижаться и при нарушении функции органов и тканей, продуцирующих эти белки. При заболеваниях печени (гепатиты, цирроз) снижается содержание в плазме крови альбумина, фибриногена, протромбина. Встречаются наследственные дефекты синтеза тех или иных белковых фракций крови, например наследственные формы: афибриногенемия и агаммаглобулинемия. Выраженная недостаточность синтеза гамма-глобулина связана с полным отсутствием у таких больных плазматических клеток во всех тканях и значительным уменьшением количества лимфоцитов в лимфатических узлах.

Выход белков из кровеносного русла наблюдается при:

  • а) кровопотерях, ранениях, больших кровоизлияниях;
  • б) плазмо-потерях, в частности ожогах;
  • в) повышении проницаемости стенки капилляров, например при воспалении и венозном застое.

При обширных воспалительных процессах падает в крови содержание альбуминов вследствие их выхода из сосудов в интерстициальное пространство (рис. 52). Большое количество альбуминов обнаруживается также в асцитической жидкости при портальной гипертонии и сердечной недостаточности.

Гипоальбуминемия может возникать при нарушении процессов реабсорбции белка в почках, например при нефрозах.

При гипопротеинемии вследствие уменьшения содержания альбуминов падает онкотическое давление крови, что приводит к возникновению отеков.

При абсолютном понижении количества альбуминов в крови нарушается связывание и транспорт катионов (кальция, магния), гормонов (тироксина), билирубина и других веществ, что сопровождается рядом функциональных расстройств.

При дефиците гаптоглобина, белка из фракции α 2 -глобулинов, нарушается связывание и транспорт гемоглобина, освобождающегося при физиологическом гемолизе эритроцитов, и гемоглобин теряется с мочой.

Падение синтеза антигемофильного глобулина из фракции β 2 -глобулинов приводит к кровоточивости.

При недостатке трансферрина, относящегося к β 1 -глобулинам, нарушается перенос железа.

Основным последствием гипо- или агаммаглобулинемии является снижение иммунитета из-за нарушения выработки антител (γ-глобулинов). В то же время отсутствует реакция на гомологичные трансплантаты (не образуются антитела к чужеродной ткани и возможно ее приживление).

Гиперпротеинемия . Чаще развивается относительная гиперпротеинемия с повышением концентрации белков в крови, хотя абсолютное их количество не увеличивается. Такое состояние возникает при сгущении крови вследствие потери организмом воды.

Абсолютная гиперпротеинемия, как правило, связана с гиперглобулинемией. Например, увеличение содержания γ-глобулинов характерно для инфекционных заболеваний, когда происходит интенсивная продукция антител. Гипергаммаглобулинемия может возникать как компенсаторная реакция на недостаток в крови альбуминов. Например, при хронических заболеваниях печени (цирроз) нарушается синтез альбуминов; количество белков в крови не уменьшается, а возрастает за счет интенсивного синтеза γ-глобулинов. При этом могут образовываться неспецифические γ-глобулины.



Преобладание глобулинов над альбуминами изменяет альбуминово-глобулиновый коэффициент крови в сторону его уменьшения (в норме равен 2-2,5).

При некоторых патологических процессах и заболеваниях изменяется в крови процентное соотношение отдельных белковых фракций, хотя общее содержание белка существенно не изменяется. Например, при воспалении увеличивается концентрация защитного белка пропердина (от лат. perdere - разрушать). Пропердин в сочетании с комплементом обладает бактерицидными свойствами. В его присутствии подвергаются лизису бактерии и некоторые вирусы. Содержание пропердина в крови уменьшается при ионизирующей радиации.

Парапротеинемия . Значительная гиперпротеинемия (до 12- 15% и более белка в крови) отмечается при появлении большого количества аномальных глобулинов. Типичным примером изменения синтеза глобулинов является миелома (плазмоцитома). Миелома - разновидность лейкозов (парапротеинемический ретикулоз).

При γ-миеломе ненормальные глобулины синтезируются опухолевыми клонами плазматических клеток, которые поступают в периферическую кровь, составляя 60% и более от общего числа лейкоцитов. Патологический миеломный белок не обладает свойством антител. Он имеет малый молекулярный вес, проходит через почечный фильтр, откладывается в почках, способствуя в 80% случаев развитию почечной недостаточности. При миеломе резко ускоряется РОЭ (60-80 мм в час) вследствие преобладания глобулинов над альбуминами.

Существует заболевание макроглобулинемия Вальденстрема, характеризующееся опухолевидным разрастанием клеток лимфоидного ряда и повышенной продукцией макроглобулинов с молекулярным весом выше 1 000 000. Макроглобулины приближаются к глобулинам группы М (JqM); в норме их имеется не более 0,12%. При описываемом заболевании содержание их достигает 80% от общего количества белка в плазме, вязкость крови увеличивается в 10-12 раз, что затрудняет работу сердца.

Нарушение обмена при самых различных заболеваниях может сопровождаться появлением в крови совершенно новых белков. Например, в острой фазе ревматизма, при стрептококковой, пневмококковой инфекциях, инфаркте миокарда в сыворотке крови найден С-реактивный белок (С-реактивным он назван потому, что дает реакцию преципитации с С-полисахаридом пневмококков). С-реактивный белок при электрофорезе перемещается между α- и β-глобулинами; к антителам не относится. По-видимому, его появление отражает реакцию ретикулоэндотелиальной системы на продукты распада тканей.

К необычному белку крови относится также криоглобулин, который в электрическом поле передвигается с γ-глобулинами. Криоглобулин способен выпадать в осадок при температуре ниже 37°. Он появляется при миеломе, нефрозе, циррозе печени, лейкоцитах и других заболеваниях. Наличие криоглобулина в крови больных опасно, так как при сильном местном охлаждении белок выпадает в осадок, что способствует образованию тромбов и некрозу тканей.

Нарушение трансаминирования и окислительного дезаминирования. Процессы трансаминирования и дезаминирования имеют универсальное значение для всех живых организмов: трансаминирование способствует синтезу аминокислот, дезаминирование - их разрушению.

Суть реакции трансаминирования состоит в обратном переносе аминогруппы с аминокислоты в α-кетокислоту без промежугочного образования свободного иона аммония. Реакция катализируется специфическими ферментами аминотрансферазами (трансаминазами), кофакторами которых являются фосфорилированные формы пиридоксина (пиридоксальфосфат и пиридоксаминфосфат).

Нарушения реакций трансаминирования могут возникать по нескольким причинам, прежде всего - в результате дефицита пиридоксина (беременность, угнетение сульфаниламидными препаратами кишечной микрофлоры, торможение синтеза пиридоксальфосфата при лечении фтивазидом). Снижение активности аминотрансфераз происходит также в случае угнетения синтеза белков (голодание, тяжелая патология печени). Если в некоторых органах возникает некроз (инфаркт миокарда или легких, панкреатит, гепатит и др.), то вследствие разрушения клеток тканевые аминотрансферазы поступают в кровь, и повышение их активности в крови при такой патологии является одним из диагностических критериев. В изменении скорости трансаминирования важную роль играют нарушение соотношения субстратов реакции, а также влияние гормонов, особенно глюкокортикоидов и гормонов щитовидной железы, стимулирующих этот процесс.

Угнетение процесса окислительного дезаминирования, в результате которого распадаются неиспользованные аминокислоты, обусловливает повышенную концентрацию их в крови - гипераминоацидемию . Последствиями этого являются усиленная экскреция аминокислот почками (аминоацидурия ) и изменение соотношения отдельных аминокислот в крови, что создает неблагоприятные условия для синтеза белковых молекул. Дезаминирование нарушается при дефиците компонентов, которые прямо или косвенно принимают участие в этой реакции (пиридоксин, рибофлавин, никотиновая кислота), а также при гипоксии, голодании (белковая недостаточность).

Нарушение декарбоксилирования. Этот процесс является важным, хотя и не универсальным направлением белкового обмена, и происходит с образованием углекислого газа и биогенных аминов. Декарбоксилированию подвергаются лишь некоторые аминокислоты: гистидин преобразуется в гистамин, тирозин - в тирамин, γ-глугаминовая кислота - в γ-аминомасляную кислоту (ГАМК), 5-гидрокситриптофан - в серотонин, производные тирозина (3,4-диоксифенилаланин) и цистина (L-цистеиновая кислота - соответственно в 3,4-диоксифенилэтиламин (дофамин) и таурин.

Биогенные амины, как известно, имеют специфическую биологическую активность, и увеличение их количества может вызвать определенные патологические изменения в организме. Большое количество биогенных аминов может быть результатом не только усиленного декарбоксилирования соответствующих аминокислот, но и угнетения окисления аминов и нарушения связывания их белками. Например, при гипоксии, ишемии и деструкции тканей (травма, облучение и т. п.) замедляются окислительные процессы, тем самым способствуя усилению декарбоксилирования. Избыток биогенных аминов (особенно гистамина и серотонина) в тканях может обусловить значительное нарушение местного кровообращения, повышение проницаемости сосудистой стенки и повреждение нервного аппарата.

Наследственные нарушения обмена некоторых аминокислот

Метаболизм аминокислот детерминируется определенным количеством и активностью соответствующих ферментов. Наследственные нарушения синтеза ферментов приводят к тому, что необходимая аминокислота не включается в метаболизм, а накапливается в биологических средах организма: крови, моче, кале, поту, спинномозговой жидкости. Клиническая картина в таких случаях обусловлена, во-первых, наличием достаточно большого количества вещества, которое должно было метаболизоваться с помощью заблокированного фермента; во-вторых - дефицитом вещества, которое должно было образоваться.

Генетически обусловленных нарушений обмена аминокислот известно довольно много, все они наследуются по аутосомно-рецессивному типу. Некоторые из них приведены в табл. 2.

Нарушение обмена фенилаланина. В норме фенилаланин преобразуется в тирозин. Если в печени нарушается синтез необходимого для этого фермента фенила-ланингидроксилазы (схема 4), то окисление фенилаланина происходит посредством образования фенилпировиноградной и фенилмолочной кислот - развивается фенилкетонурия. Однако этот путь имеет малую “пропускную” способность, поэтому большое количество фенилаланина накапливается в крови, тканях и спинномозговой жидкости, что в первые же месяцы жизни новорожденного проявляется тяжелым поражением ЦНС и неизлечимым слабоумием. Вследствие недостаточного синтеза тирозина угнетается образование меланина, который обусловливает осветление кожи и волос. Кроме того, в результате повышенного образования фенилпировиноградной кислоты тормозится активность фермента дофамингидроксилазы, необходимого для синтеза катехоламинов (адреналина, норадреналина). Тяжесть наследственной патологии определяется комплексом всех этих нарушений. Больные умирают в детстве, если не проводится специальное лечение, заключающееся в постоянном, но осторожном (контроль аминокислотного состава крови) ограничении поступления фенилаланина с пищей. Раннюю диагностику заболевания нужно проводить сразу после рождения ребенка. Для этого применяют различные биохимические тест-системы.

Нарушение обмена тирозина. Обмен тирозина происходит несколькими путями. В случае недостаточного преобразования тирозина в гомогентизиновую кислоту (см. схему 4), что может быть обусловлено дефектом различных ферментов, тирозин накапливается в крови и выводится с мочой. Это нарушение называется тирозинозом и сопровождается печеночной и почечной недостаточностью и ранней смертью ребенка или лишь задержкой психомоторного развития. Если нарушение обмена тирозина происходит в момент окисления гомогентизиновой кислоты (см. схему 4), развивается алкаптонурия. Фермент, окисляющий гомогентизиновую кислоту (гомогентизиноксидаза), образуется в печени. В норме он настолько быстро разрывает ее гидрохиноновое кольцо, что кислота “не успевает” попасть в кровь, а если и попала, то быстро выделяется почками. В случае наследственного дефекта этого фермента гомогентизиновая кислота в большом количестве накапливается в крови и моче. Моча больных алкаптонурией на воздухе или после добавления щелочи становится черной. Это объясняется окислением гомогентизиновой кислоты кислородом воздуха и образованием в ней алкаптона (от лат. alcapton - захватывающий щелочь). Гомогентизиновая кислота с током крови поступает в ткани - хрящевую, сухожилия, связки, внутренний слой стенки аорты, вследствие чего образуются темные пятна в области ушей, носа, щек, на склерах. Алкаптон делает хрящи и сухожилия хрупкими, что иногда приводит к тяжелым изменениям в суставах.

Также тирозин - это исходный продукт для образования пигмента меланина, содержащегося в коже и волосах. Если преобразование тирозина в меланин замедленно вследствие наследственного дефицита тирозиназы (см. схему 4), возникает альбинизм , который сопровождается повышением чувствительности кожи к солнечному свету и нарушением зрения.

И наконец, тирозин является предшественником тироксина. В случае недостаточного синтеза фермента, который катализирует взаимодействие тирозина со свободным йодом, нарушается образование гормонов щитовидной железы.

Нарушение обмена триптофана. Основной путь метаболизма триптофана, как и никотиновой кислоты, обеспечивает синтез никотинамидадениндинуклеотида (НАД) и НАДФ, которые играют важную роль в жизнедеятельности организма, будучи коферментами многих реакций обмена, а значительный дефицит этих веществ служит причиной развития пеллагры . Нарушение обмена триптофана также может сопровождаться изменением количества образующегося из него серотонина.

Гипераминоацидурии . О гипераминоацидуриях говорят в том случае, когда выведение одной или нескольких аминокислот с мочой превышает физиологические значения.
В зависимости от происхождения можно выделить: 1. метаболические или преренальные и 2. ренальные аминоацидурий.

При метаболических аминоацидуриях одной или нескольких аминокислот образуется больше, нежели в норме, или метаболизируется меньшее их количество. Избыток превышает реабсорбционную способность канальцев, поэтому аминокислоты «переливаются через край», выделяются с мочой. В этих случаях наряду с повышенной аминоацидурией обнаруживается повышенная концентрация соответствующих аминокислот в крови.

С симптоматическими формами метаболических аминоацидурий можно встретиться при тяжелых поражениях печени.

Однако в большинстве случаев метаболические аминоацидурий представляют собой наследственные энзимопатии: межуточный обмен какой-либо аминокислоты нарушается вследствие недостатка определенного энзима. Продукты обмена веществ, образовавшиеся до энзиматического блока, накапливаются в крови и в большом количестве выделяются с мочой.

При почечной аминоацидурий аминокислоты синтезируются в нормальном количестве, однако вследствие врожденного или приобретенного повреждения почечных канальцев они в большом количестве выделяются с мочой. Эти аномалии более подробно описаны в главе о заболеваниях почек. Здесь будет уделено внимание только врожденным метаболическим аминоацидуриям.

Фенилкетонурия . Фенилпировиноградная олигофрения (болезнь Фёллинга). Энзимопатия, наследуемая по аутосомно-рецессивному типу. Ее биохимической сущностью является невозможность превращения фенилаланина в тирозин вследствие отсутствия фермента фенилаланин-оксидазы. Клинические проявления этой аномалии связаны с выраженным повреждением мозга, сопровождающимся умственной отсталостью. Это нередкое заболевание - одна из наиболее частых причин олигофрении. Среди населения встречается с частотой 1:10 000-1: 20 000.

Патогенез . Из-за отсутствия фермента, участвующего в обмене фенилаланина - фенилаланин-оксидазы, в крови накапливается фенилаланин и продукт его метаболизма - фенилпировиноградная кислота. Накопление этих веществ является причиной ведущего клинического симптома - поражения мозга, вызываемого, по-видимому, тормозящим влиянием этих метаболитов на другие энзиматические процессы в мозгу. Кроме того, в формировании болезни определенную роль играет также нарушение нормального синтеза тирозина, который является основным материалом для производства адреналина, норадреналина и дийодтирозина.

Клиническая картина . Ведущим признаком фенилкетонурии является олигофрения, проявляющаяся уже в раннем грудном возрасте и быстро прогрессирующая. Нередко встречается гипертония мышц, в части случаев наблюдаются эпилептиформные судороги.

Среди прочих изменений, связанных с дефектом обмена веществ, следует упомянуть недостаточную пигментацию больных. Многие из них голубоглазы, имеют светлую кожу и белокурые волосы. Часто встречаются брахицефалия и гипертейлоризм. Артериальное давление обычно низкое. Пот больных имеет неприятный («мышиный») запах.

Диагноз . В связи с возможностью лечения заболевания большое значение имеет раннее распознавание носителей аномалии. Фенилаланин и продукты его обмена можно обнаружить в крови и моче. Концентрация фенилаланина в крови во много раз превышает верхний предел нормы (1,5 мг%). В моче с помощью пробы Фёллинга можно качественно показать присутствие фенилпировиноградной кислоты: при прибавлении раствора хлорида железа моча приобретает темно-зеленый цвет.

Однако эта проба становится положительной только в возрасте 3-4 недель и, кроме того, не является специфической. Более точные результаты уже в конце первой недели дает проба Гутри: микробиологический метод, основанный на влиянии, которое оказывает фенилаланин на рост сенной палочки. Безусловно, этот метод наиболее приемлем для обследования популяции младенцев . Его недостатком является необходимость взятия крови, проведение которого в широких масштабах пока затруднительно. До тех пор, пока этот анализ не станет всеобщим, необходимо в 3-4-недельном возрасте производить феррохлоридную пробу и в подозрительных случаях подтвердить диагноз путем исследования спектра аминокислот крови и мочи методом хроматографии на бумаге. При отягощенной наследственности анализ крови следует производить уже на первой неделе жизни.

Лечение . При рано начатой терапии, по возможности уже в период новорожденности, можно добиться успеха путем снижения до минимума содержания фенилаланина в диете. Однако применение казеингидролизата, который составляет основу диеты, обеспечивая ограничение фенилаланина, затруднительно и дорого. В настоящее время предложены специальные препараты для лечения фенилкетонурии - берлофен, лофеналак, минафен, гипофенат, - которые удовлетворительно переносятся больными. При лечении, начатом в позднем грудном возрасте, можно добиться только прекращения дальнейшего прогрессирования идиотии.

Алкаптонурия . Заболевание характеризуется темно-коричневой окраской мочи, которая появляется при стоянии на воздухе. Наследственная энзимопатия, у больных отсутствует фермент гомогентизиназа. Гомогентизиновая кислота, выделяемая в большем количестве, на воздухе окисляется, приобретая коричневый цвет. Пеленки и нижнее белье ребенка также окрашиваются, что облегчает постановку диагноза.

Кроме описанной выше особенности мочи, при этой аномалии имеются только два других симптома: появляющаяся в более позднем возрасте артропатия и синеватая окраска хрящей, легко обнаруживаемая на ушной раковине. Лечения нет.

Альбинизм также является наследственной аномалией обмена ароматических аминокислот. При этом отсутствует энзим тирозиназа, который катализирует превращение тирозина в ДОФА - диоксифенилаланиц. Так как ДОФА - основа для синтеза меланина, то носители аномалии светлокожие, светловолосые люди, у которых через лишенную пигментации радужную оболочку просвечивает красноватая сосудистая сеть.

Альбинизм неизлечим. Больным следует избегать прямого солнечного света.

Болезнь кленового сиропа . Рецессивно наследуемая редкая энзимопатия. При этом заболевании отсутствует специфическая декарбоксилаза, которая необходима для метаболизма трех важных аминокислот: валина, лейцина и изолейцина. Эти аминокислоты и их метаболиты накапливаются в крови и в значительных количествах выделяются с мочой. Продукты обмена придают моче особенный запах, напоминающий запах сиропа, приготовленного из кленового сока.

Основным проявлением заболевания является поражение мозга, сопровождающееся судорогами, развивающееся уже в первые недели жизни и заканчивающееся смертью в раннем грудном возрасте.

При постановке диагноза имеет значение проба Фёллинга, ибо если она положительна, то указывает направление дальнейших исследований; точный диагноз устанавливается с помощью исследования аминокислот крови и мочи методом хроматографии на бумаге.

Для лечения предпринимаются попытки добиться улучшения обмена с помощью синтетической диеты.

Болезнь Хэртнапа . Очень редкое наследственное заболевание, которое сопровождается почечной гипераминоацидурией. Большое количество индикана, обнаруживаемое в моче, указывает на нарушение обмена триптофана. Клинически характеризуется мозжечковой атаксией и изменениями кожи, напоминающими пеллагру.

Оксалоз . Редкое наследственное заболевание. Вследствие энзиматического блока в обмене гликокола образуется большое количество щавелевой кислоты, которая накапливается в организме и выделяется с мочой.

Клинически ведущими признаками являются боли вследствие камнеобразования в почках, кровь и гной в моче. Кроме почек кристаллы оксалата кальция откладываются в мозгу, селезенке, лимфатических узлах и костном мозге.

Диагноз основывается на обнаружении гипероксалурии и кристаллов оксалата н костном мозге и лимфатических узлах.

В лечении - наряду с симптоматической терапией - перспективным представляется постоянный прием бензоата натрия, который образует вместе с гликоколом гиппуровую кислоту и уменьшает продукцию щавелевой кислоты.

Цистиноз . Наследственное, аутосомно-рецессивное заболевание, в основе которого лежит накопление кристаллов цистина в ретикулоэндотелии и отдельных органах и развивающаяся в связи с этим тяжелая нефропатия.

Патогенез заболевания недостаточно ясен, по-видимому, речь идет о метаболическом блоке в катаболизме цистина.

Клиническая симптоматика . К числу начальных изменений принадлежит увеличение размеров селезенки и печени, развивающееся в первые месяцы жизни. Решающая судьбу больного нефропатия проявляется во втором полугодии жизни. Появляются признаки, указывающие на начальные канальцевые повреждения: гипераминоацидурия, глюкозурия, протеинурия. Позднее положение отягощается полиурией, почечным канальцевым ацидозом, а также гипокалиемией и гипофосфатемией почечного происхождения. Полиурия вызывает эксикоз и гипертермию, фосфат-диабет становится причиной рахита и карликового роста , дефицит калия проявляется параличами. В конечной стадии заболевания к канальцевой недостаточности присоединяется клубочковая недостаточность, развивается уремия.

Диагноз . Канальцевая недостаточность, глюкозурия, ацидоз, гипераминоацидурия, гиперфосфатурия, сопровождающиеся остеопатией и карликовым ростом, в развернутой фазе заболевания дают в совокупности характерную картину. Эти сдвиги соответствуют картине синдрома Де Тони-Дебре-Фанкони, который, однако, может иметь иное происхождение.

При дифференциальной диагностике решающее значение имеет обнаружение кристаллов цистина в роговице с помощью щелевой лампы либо в биоптическом препарате лимфатических желез.

Для лечения назначают диету с ограничением метионина и цистина. С целью симптоматической терапии применяются высокие дозы витамина D, введение щелочных растворов и компенсация недостатка калия, увеличенное количество воды в рационе ребенка и, наконец, пеницилламин.

Прогноз плохой.

Гомоцистинурия . Клиническая симптоматика аномалии характеризуется олигофренией различной степени, эктопией хрусталиков, обращают на себя внимание белокурые волосы. В крови повышено содержание метионина и гомоцистина, с помощью специальных методов в моче обнаруживают гомоцистин.

Лечение - бедная метионином диета, однако она не очень эффективна.
Женский журнал www.

Вам также будет интересно:

Маточные трубы, они же фаллопиевы
Женский организм полон тайн. Он подвергается ежемесячным циклическим изменениям. Этого...
Прокуратура Башкортостана: «Преподавание башкирского языка вопреки согласию родителей не допускается Из истории вопроса
Прокуратура Башкирии в результате многочисленных проверок признала вопрос обязательного...
Что мы знаем о Дагестанской кухне?
Любые орехи — один из лучших ингредиентов вкусных десертов. Предлагаем начать с грецких и...
Монгольское завоевание и его влияние на историю России
Рождение Монгольской империи . В начале XIII в. на Русь стали доходить смутные слухи о...