Сайт о холестерине. Болезни. Атеросклероз. Ожирение. Препараты. Питание

Гороскоп козерог на май майл

Отставка Медведева или роспуск Госдумы: Россию ожидают серьезные изменения

Медведев испугался отставки

Отпуск на основной работе и по совместительству: особенности предоставления

Характеристика мужчин и женщин козерогов в год змеи

К чему снится грязный унитаз

Нашел клад К снится клад во сне

Сонник пальцы, к чему снится пальцы, во сне пальцы

Кабачки как грибы: рецепты заготовок на зиму с пошаговыми фото Как закрыть кабачки со вкусом грибов

Список продуктов питания понижающие артериальное давление

Молитвы при глазных болезнях

Трансферин с низким уровнем гликирования (CDT): лабораторный критерий злоупотребления алкоголем Кровь на сдт в наркологии

Молитва пред иконой всецарица от рака

Драники кабачковые: рецепт приготовления с фото Деруны из картошки и кабачков

Цыпленок в фольге в мультиварке Как приготовить цыпленка табака в мультиварке скороварке

Вторичные посредники. Кальций как вторичный посредник Пептидные и белковые гормоны

В зависимости от локализации рецепторов в клетках–мишенях гормоны можно разделить на три группы.

Первую группу составляютгормоны липидной природы. Будучи жирорастворимыми, они легко проникают через клеточную мембрану и взаимодействуют с рецепторами, локализованными внутри клетки,–как правило, в цитоплазме.

Втораягруппа–белковые и пептидные гормоны. Они состоят из аминокислот и по сравнению с гормонами липидной природы имеют более высокую молекулярную массу и менее липофильны, из–за чего с трудом проходят через плазматическую мембрану. Рецепторы этих гормонов находятся на поверхности клеточной мембраны, так что белковые и пептидные гормоны в клетку не проникают.

Третью химическую группу гормонов составляют низкомолекулярныетиреоидные гормоны, образованные двумя аминокислотными остатками, связанными между собой эфирной связью. Эти гормоны легко проникают во все клетки тела и взаимодействуют с рецепторами, локализованными в ядре. Одна и та же клетка может иметь рецепторы всех трех типов, т.е. локализованные в ядре, цитозоле и на поверхности плазматической мембраны. Кроме того, в одной и той же клетке могут присутствовать разные рецепторы одного типа; например, на поверхности клеточной мембраны могут находиться рецепторы разных пептидных и/или белковых гормонов.

Вторичные посредники: 1)циклические нуклеотиды (цАМФ и цГМФ); 2)ионы Ca и 3)метаболиты фосфатидилинозитола.

Присоединение гормона к рецептору позволяет последнему взаимодействовать с G-белком. Если G-белок активирует систему аденилатциклаза-цАМФ, его называют Gs-белком. Стимуляция аденилатциклазы, связанной с мембраной фермента посредствам Gs-белка, катализирует превращение небольшого количества присутствующего в цитоплазме аденозинтрифосфата в цАМФ внутри клетки.

Следующий этап опосредован активацией цАМФ-зависимой протеинкиназой, которая фосфорилирует специфические белки в клетке, запуская биохимические реакции, что гарантированно обеспечивает ответ клетки на действие гормона.

Как только цАМФ образуется в клетке, это обеспечивает последовательную активацию ряда ферментов, т.е. каскадную реакцию. Таким образом, первый активированный фермент активирует второй, который активирует третий. Задача такого механизма заключается в том, что небольшое количество молекул, активированных аденилатциклазой, может активировать значительно большее количество молекул на следующем этапе каскадной реакции, что является способом усиления ответа.

В итоге благодаря этому механизму ничтожно малое количество гормона, действующее на поверхность мембраны клетки, запускает мощный каскад активирующих реакций.

Если гормон взаимодействует с рецептором , сопряженным с тормозящим G-белком (Gi-белок), это снижает образование цАМФ и, как следствие, снижает активность клетки.

Молекулу гормона обычно называют первичным посредником регуляторного эффекта, или лигандом. Молекулы большинства гормонов связываются со специфическими для них рецепторами плазматических мембран клеток мишеней, образуя лиганд-рецепторный комплекс. Для пептидных, белковых гормонов и катехоламинов его образование является основным начальным звеном механизма действия и приводит к активации мембранных ферментов и образованию различных вторичных посредников гормонального регуляторного эффекта, реализующих свое действие в цитоплазме, органоидах и ядре клетки. Среди ферментов, активируемых лиганд-рецептор-ным комплексом, описаны: аденилатциклаза, гуанилатциклаза, фосфолипа-зы С, D и А2, тирозинкиназы, фосфаттирозинфосфатазы, фосфоинозитид-3-ОН-киназа, серинтреонин-киназа, синтаза N0 и др. Вторичными посредниками, образующимися под влиянием этих мембранных ферментов, являются: 1) циклический аденозинмонофосфат (цАМФ); 2) циклический гуано зинмонофосфат (цГМФ); 3) инозитол-3-фосфат (ИФЗ); 4) диацилглицерол; 5) олиго (А) (2,5-олигоизоаденилат); 6) Са2+ {ионизированный кальций); 7) фосфатидная кислота; 8) циклическая аденозиндифосфатрибоза; 9) N0 (оксид азота). Многие гормоны, образуя лиганд-рецепторные комплексы, вызывают активацию одновременно нескольких мембранных ферментов и, соответственно, вторичных посредников.

Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд. Значительная часть гормонов и биологически активных веществ взаимодействуют с семейством рецепторов, связанных с G-белками плазматической мембраны (андреналин, норадреналин, аденозин, ангиотензин, эндотелии и др.).

Основные системы вторичных посредников.

Система аденилатциклаза - цАМФ . Мембранный фермент аденилатциклаза может находиться в двух формах - активированной и неактивированной. Активация аденилатциклазы происходит под влиянием гормон-рецепторного комплекса, образование которого приводит к связыванию гуанилового нуклеотида (ГТФ) с особым регуляторным стимулирующим белком (GS-белок), после чего GS-белок вызывает присоединение Mg к аденилатциклазе и ее активацию. Так действуют активирующие аде-нилатциклазу гормоны - глюкагон, тиротропин, паратирин, вазопрессин (через V-2-рецепторы), гонадотропин и др. Ряд гормонов, напротив, подавляет аденилатциклазу - соматостатин, ангиотензин-II и др. Гормонрецепторные комплексы этих гормонов взаимодействуют в мембране клетки с другим регуляторным ингибирующим белком (GI-белок), который вызывает гидролиз гуанозинтрифосфата (ГТФ) до гуанозиндифосфата (ГДФ) и, соответственно, подавление активности аденилатциклазы. Адреналин через р-адренорецепторы активирует аденилатциклазу, а через альфа1-адренорецепторы ее подавляет, что во многом и определяет различия эффектов стимуляции разных типов рецепторов. Под влиянием аденилатциклазы из АТФ синтезируется цАМФ, вызывающий активацию двух типов протеинкиназ в цитоплазме клетки, ведущих к фосфорилированию многочисленных внутриклеточных белков. Это повышает или снижает проницаемость мембран, активность и количество ферментов, т. е. вызывает типичные для гормона метаболические и, соответственно, функциональные сдвиги жизнедеятельности клетки. В табл. 6.2 приведены основные эффекты активации цАМФ-зависимых протеинкиназ.



Трансметилазная система обеспечивает метилирование ДНК, всех типов РНК, белков хроматина и мембран, ряда гормонов на уровне тканей, фосфолипидов мембран. Это способствует реализации многих гормональных влияний на процессы пролиферации, дифференцировки, состояние проницаемости мембран и свойства их ионных каналов и, что важно подчеркнуть особо, влияет на доступность мембранных рецепторных белков молекулам гормонов. Прекращение гормонального эффекта, реализуемого через систему аденилатциклаза - цАМФ, осуществляется с помощью специального фермента фосфодиэстеразы цАМФ, вызывающей гидролиз этого вторичного посредника с образованием аденозин-5-монофосфата. Однако этот продукт гидролиза превращается в клетке в аденозин, также обладающий эффектами вторичного посредника, так как подавляет в клетке процессы метилирования.

Система гуанилатциклаза-цГМФ. Активация мембранной гуанилатциклазы происходит не под непосредственным влиянием гормон-рецепторного комплекса, а опосредованно через ионизированный кальций и ок-сидантные системы мембран. Определяющая эффекты ацетилхолина стимуляция активности гуанилатциклазы также осуществляется опосредованно через Са2+. Через активацию гуанилатциклазы реализует эффект и на-трийуретический гормон предсердий - атриопептид. Путем активации пе-рекисного окисления стимулирует гуанилатциклазу гормон эндотелия сосудистой стенки оксид азота - расслабляющий эндотелиальный фактор. Под влиянием гуанилатциклазы из ГТФ синтезируется цГМФ, активирующий цГМФ-зависимые протеинкиназы, которые уменьшают скорость фосфорилирования легких цепей миозина в гладких мышцах стенок сосудов, приводя к их расслаблению. В большинстве тканей биохимические и физиологические эффекты цАМФ и цГМФ противоположны. Примерами могут служить стимуляция сокращений сердца под влиянием цАМФ и торможение их цГМФ, стимуляция сокращения гладких мышц кишечника цГМФ и подавление цАМФ. цГМФ обеспечивает гиперполяризацию рецепторов сетчатки глаза под влиянием фотонов света. Ферментативный гидролиз цГМФ, а следовательно, и прекращение гормонального эффекта, осуществляется с помощью специфической фосфодиэстеразы.

Система фосфолипаза С - инозитол-3-фосфат. Гормонрецепторный комплекс с участием регуляторного G-белка ведет к активации мембранного фермента фосфолипазы С, вызывающей гидролиз фосфоли-пидов мембраны с образованием двух вторичных посредников: инозитол-3-фосфата и диацилглицерола. Инозитол-3-фосфат вызывает выход Са2+ из внутриклеточных депо, в основном из эндоплазматического ретикулума, ионизированный кальций связывается со специализированным белком кальмодулином, что обеспечивает активацию протеинкиназ и фосфорилирование внутриклеточных структурных белков и ферментов. В свою очередь диацилглицерол способствует резкому повышению сродства протеинкиназы С к ионизированному кальцию, последний без участия кальмодулина ее активирует, что также завершается процессами фосфорилирования белков. Диацилглицерол одновременно реализует и другой путь опосредования гормонального эффекта за счет активирования фосфолипазы А-2. Под влиянием последней из мембранных фосфолипидов образуется арахи-доновая кислота, являющаяся источником мощных по метаболическим и физиологическим эффектам веществ - простагландинов и лейкотриенов. В разных клетках организма превалирует один или другой путь образования вторичных посредников, что в конечном счете и определяет физиологический эффект гормона. Через рассмотренную систему вторичных посредников реализуются эффекты адреналина (при связи с альфа-адренорецепто-ром), вазопрессина (при связи с V-1-рецептором), ангиотензина-И, соматостатина, окситоцина.

Система кальций-кальмодулин . Ионизированный кальций поступает в клетку после образования гормон-рецепторного комплекса либо из внеклеточной среды за счет активирования медленных кальциевых каналов мембраны (как это происходит, например, в миокарде), либо из внутриклеточных депо под влиянием инозитол-3-фосфата. В цитоплазме немышечных клеток кальций связывается со специальным белком-кальмодулином, а в мышечных клетках роль кальмодулина выполняет тропонин С. Связанный с кальцием кальмодулин изменяет свою пространственную организацию и активирует многочисленные протеинкиназы, обеспечивающие фосфорилирование, а следовательно изменение структуры и свойств белков. Кроме того комплекс кальций-кальмодулин активирует фосфодиэстеразу цАМФ, что подавляет эффект циклического соединения как вторичного посредника. Вызываемое гормональным стимулом кратковременное увеличение в клетке кальция и его связывание с кальмодулином является пусковым стимулом для многочисленных физиологических процессов - сокращения мышц, секреции гормонов и выделения медиаторов, синтеза ДНК, изменения подвижности клеток, транспорта веществ через мембраны, изменения активности ферментов.

Взаимосвязи вторичных посредников В клетках организма присутствуют или могут образовываться одновременно несколько вторичных посредников. В связи с этим между вторичными посредниками устанавливаются различные взаимоотношения: 1) равнозначное участие, когда разные посредники необходимы для полноценного гормонального эффекта; 2) один из посредников является основным, а другой лишь способствует реализации эффектов первого; 3) посредники действуют последовательно (например, инозитол-3-фосфат обеспечивает освобождение кальция, диацилглицерол облегчает взаимодействие кальция с протеинкиназой С); 4) посредники дублируют друг друга для обеспечения избыточности с целью надежности регуляции; 5) посредники являются антагонистами, т. е. один из них включает реакцию, а другой - тормозит (например, в гладких мышцах сосудов инозитол-3-фосфат и кальций реализуют их сокращение, а цАМФ - расслабление).

Ответ клетки-мишени на действие гормона формируется созданием гормонрецепторного (ГР) комплекса, что приводит к активации самого рецептора, инициации ответа клетки. Гормон адреналин при взаимодействии с рецептором открывает мебранная каналы, a Na + - входной ионный ток обусловливает функцию клетки. Однако большинство гормонов открывают или закрывают мембранные каналы не самостоятельно, а во взаимодействии с G-белком.

Механизм действия гормонов на клетки-мишени связан с их химическим строением:

■ водорастворимые гормоны - белки и полипептиды, а также производные аминокислоты - катехоламины, взаимодействуют с рецепторами мембраны клетки-мишени, образуя комплекс «гормон - рецептор" (ГР). Возникновение этого комплекса приводит к образованию вторичного или внутриклеточного посредника (мессенджера), с которым связаны изменения функции клетки. Количество рецепторов на поверхности мембраны клетки-мишени составляет примерно 104-105;

■ жирорастворимые гормоны - стероидные - проходят сквозь мембрану клетки-мишени и взаимодействуют с плазматическими рецепторами, количество которых колеблется от 3000 до 104, образуя комплекс ГР, который далее поступает к мембране ядра. Стероидные гормоны и производные аминокислоты тирозина - тироксин и трийодтиронин - проникают через ядерную мембрану и взаимодействуют с ядерными рецепторами, соединенными с одной или более хромосом, следствием чего являются изменения синтеза белка в клетке-мишени.

Согласно современным представлениям, действие гормонов обусловлена стимуляцией или угнетением каталитической функции некоторых ферментов в клетках-мишенях. Этот эффект может достигаться двумя путями:

■ взаимодействием гормона с рецепторами поверхности клеточной мембраны и запуска цепи биохимических превращений в мембране и цитоплазме;

■ проникновением гормона через мембрану и связывания с рецепторами цитоплазмы, после чего гормонрецепторний комплекс проникает в ядро и органеллы клетки, где и реализует свой регуляторный эффект путем синтеза новых ферментов.

Первый путь приводит к активации мембранных ферментов и образования вторичных мессенджеров. На сегодня известно четыре системы вторичных мессенджеров:

■ аденилатциклаза - цАМФ;

■ гуанилатциклаза - цГМФ;

■ фосфолипаза - инозитолтрифосфат;

■ кальмодулин - ионизированный Са 2+.

Второй путь влияния на клетки-мишени - комплексирования гормона с рецепторами, которые содержатся в ядре клетки, ведет к активации или торможения ее генетического аппарата.

Мембранные рецепторы и вторичные посредники (мессенджеры)

Гормоны, связываясь с рецепторами мембраны клетки-мишени, образуют комплекс "гормон - рецептор" ГР (шаг 1) (рис. 6.3). Конформационные изменения рецептора активируют стимулирующий G-белок (объединенный с рецептором), который представляет собой комплекс из трех субъединиц (α-, β-, γ-) и гуанозиндифосфат (ГДФ). замена

ТАБЛИЦА 6.11. Краткая характеристика гормонов

Где продуцируются гормоны

Название гормона

сокращенное название

Влияния на клетки-мишени

гипоталамус

Тиреотропин-рилизинг-гормон

Стимулирует продукцию аденогипофизом тиреотропину

гипоталамус

Кортикотропин-рилизинг-гормон

Стимулирует продукцию аденогипофизом АКТГ

гипоталамус

Гонадотропин-рилизинг-гормон

Стимулирует продукцию аденогипофизом лютеинизирующего (ЛГ) и фолликулостимулирующего (ФСП гормонов

гипоталамус

Рилизинг-фактор гормона роста

Стимулирует продукцию аденогипофизом соматотропина - гормона роста

гипоталамус

соматостатин

Подавляет продукцию аденогипофизом гормона роста

гипоталамус

Пролактин-ингибирующий фактор (допамин)

Подавляет продукцию аденогипофизом пролактина

гипоталамус

Пролактинстимулюючий фактор

Стимулирует продукцию аденогипофизом пролактина

гипоталамус

окситоцин

Стимулирует выделение молока, сокращение матки

гипоталамус

Вазопрессин - антидиуретический гормон

Стимулирует реабсорбцию воды в дистальном отделе нефрона

Передняя доля гипофиза

ТТГ, или тиреостимулирующие гормон

ТТГ абоТСГ

Стимулирует синтез и секрецию щитовидной железой тироксина, трийодтиронина

Передняя доля гипофиза

Стимулирует секрецию корой надпочечников глюкокортикоидов (кортизола)

Передняя доля гипофиза

фолликулостимулирующий гормон

Стимулирует рост фолликулов и секрецию эстрогенов яичниками

Передняя доля гипофиза

лютеинизирующий гормон

Стимулирует овуляцию, образование желтого тела, а также синтез эстрогенов и прогестерона яичниками

Передняя доля гипофиза

Гормон роста, или соматотропный гормон

Стимулирует синтез белка и рост в целом

Передняя доля гипофиза

пролактин

Стимулирует продукцию и секрецию молока

Передняя доля гипофиза

β-липотропин

Промежуточная доля гипофиза

Мелзнотропин

Стимулирует синтез меланина у рыб, амфибий, рептилий (у людей стимулирует рост скелета (оссификация костей), увеличивает интенсивность метаболизма, теплопродукции, увеличивает утилизацию клетками белков, жиров, углеводов, стимулирует становление умственных функций после рождения ребенка

щитовидная железа

L-тироксин

трийодтиронин

Кора надпочечников (сетчатая зона)

половые гормоны

Стимулируют продукцию дигидрогепиандростерону и андростендиона

Кора надпочечников (пучковая зона)

Глюкокортикоидов (кортизол)

Стимулирует глюконеогенез, противовоспалительное действие, подавляет иммунную систему

Кора надпочечников (клубочковая зона)

альдостерон

Увеличивает реабсорбцию ионов Na +, секрецию ионов К + в канальцах нефрона

мозговая

вещество

надпочечников

Адреналин, норадреналин

Активация альфа-, бета-адренорецепторов

эстрогены

Рост и развитие женских половых органов, пролиферативная фаза менструального цикла

прогестерон

Секреторная фаза менструального цикла

тестостерон

Сперматогенез, вторичные половые мужские признаки

Пара щитовидные железы

Парат гормон (паратиреоидний гормон)

Увеличивает концентрацию ионов Са 2+ в крови (деминерализация костей)

Щитовидная железа (С-клетки)

кальцитонин

Уменьшает концентрацию ионов Ca2 + в крови

Активация в почках

1,25-дигидроксихолекальциферол (кальцитриол)

Увеличивает всасывание в кишечнике ионов Са 2+

Поджелудочная железа - бета-клетки

Уменьшает концентрацию глюкозы в крови

Поджелудочная железа - альфа-клетки

глюкагон

Увеличивает концентрацию глюкозы в крови

плацента

Хориональний гонадотропин человека

Увеличивает синтез эстрогена и прогестерона

плацента

Плацентарный лактоген человека

Действует подобно гормона роста и пролактина во время беременности

РИС. 6.3. Схема механизма действия гормона с образованием вторичного внутриклеточного посредника цАМФ. ГДФ - гуаниндифосфат, ГТФ - гуанинтрифосфат

ГДФ на гуанозинтрифосфат ГТФ (шаг 2) приводит к отрыву α-субъединицы, которая тут же взаимодействует с другими сигнальными белками, изменяя активность ионных каналов или клеточных ферментов - аденилатциклазы или фосфолипазы С - и функцию клетки.

Действие гормонов на клетки-мишени с образованием вторичного посредника цАМФ

Активированный мембранный фермент аденилатциклаза превращает АТФ на вторичный посредник - циклического аденозинмонофосфата цАМФ (шаг 3) (см. Рис. 6.3), который в свою очередь активирует фермент протеин киназу А (шаг 4), что приводит к фосфорилирования специфических белков (шаг 5) , следствием чего является изменение физиологической функции (шаг 6), например, образование новых мембранных каналов для ионов кальция, что приводит к росту силы сердечных сокращений.

Вторичный посредник цАМФ распадается под воздействием фермента фосфодиэстеразы в неактивной формы 5"-АМФ.

Некоторые гормоны (натрийуретический) взаимодействуют с тормозными G-белками, что приводит к снижению активности мембранных ферментов аденилатциклазы, уменьшение функции клетки.

Действие гормонов на клетки-мишени с образованием вторичных посредников - диацилглицеролу и инозитол-3-фосфат

Гормон образует комплекс с рецептором мембраны - ОС (шаг 1) (рис. 6.4) и через G-белок (шаг 2) активирует фосфолипазу С, прикрепленную к внутренней поверхности рецептора (шаг 3).

Под влиянием фосфолипазы С, которая гидролизует мембранные фосфолипиды (фосфатидилинозитолбифосфат), образуются два вторичных посредников - диацилглицерол (ДГ) и инозитол-3-фосфат (ИФ3) (шаг 4).

Вторичный посредник ИФ3 мобилизует выход ионов Са 2+ из митохондрий и эндоплазматического ретикулума (шаг 5), которые ведут себя как вторичные посредники. Ионы Ca2 + вместе с ДГ (липидный вторичный посредник) активируют фермент протеинкиназа С (шаг 6), которая фосфорилирует белки и вызывает изменение физиологических функций клетки-мишени.

Действие гормонов с помощью систем "кальций - кальмодулин", который выступает в роли вторичного посредника. Кальций при проникновении в клетку связывается с кальмодулином и активирует его. Активированный кальмодулин, в свою очередь, повышает активность протеинкиназы, которая приводит к фосфорилирования белков, изменения функций клетки.

Действие гормонов на генетический аппарат клетки

Жирорастворимые стероидные гормоны проходят сквозь мембрану клетки-мишени (шаг 1) (рис. 6.5), где связываются с белками-рецепторами цитоплазмы. Образованный комплекс ГР (шаг 2) диффундирует в ядро и связывается со специфическими участками ДНК хромосомы (шаг 3), активируя процесс транскрипции путем образования мРНК (шаг 4). мРНК переносит матрицу в цитоплазму, где обеспечивает процессы трансляции на рибосомах (шаг 5), синтез новых белков (шаг 6), что приводит к изменению физиологических функций.

Жирорастворимые тиреоидные гормоны - тироксин и трийодтиронин - проникают в ядро, где связывается с белком-рецептором, который представляет собой протеины, которые находятся на хромосомах ДНК. Эти рецепторы контролируют функцию как промоутеров, так и операторов генов.

Гормоны активируют генетические механизмы, которые находятся в ядре, благодаря чему производится более 100 типов клеточных белков. Многие из них являются ферментами, которые повышают метаболическую активность клеток организма. Однократно прореагировав с внутриклеточными рецепторами, тиреоидные гормоны обеспечивают контроль экспрессии гена на несколько недель.

Вопросы для подготовки к занятию:

1. Гормональная регуляция как механизм межклеточной и межорганной координации обмена веществ. Основные механизмы регуляции метаболизма: изменение активности ферментов в клетке, изменение количества ферментов в клетке (индукция или репрессия синтеза), изменение проницаемости клеточных мембран.

2. Гормоны, общая характеристика, классификация гормонов по химическому строению и биологическим функциям. Механизм действия гормонов белковой природы.

3. Механизм действия гормонов стероидной природы и тироксина.

4. Гормоны гипоталамуса. Люлиберин, соматостатин, тиролиберин.

5. Гормоны гипофиза. Гормоны задней доли гипофиза: вазопрессин, окситоцин.

6. Строение синтез и метаболизм йодтиронинов.

7. Влияние йодтиронинов на обмен веществ. Гипо- и гипертиреозы.

8. Гормоны мозгового слоя надпочечников. Строение, влияние на обмен веществ. Биосинтез катехоламинов.

9. Гормон роста, строение, функции.

10. Гормоны околощитовидных желез. Регуляция фосфорно-кальциевого обмена.

11. Инсулин. Глюкагон. Влияние на обмен веществ.

12. Гормональная картина инсулинзависимого сахарного диабета

13. Гормональная картина инсулиннезависимого сахарного диабета

14. Стероидные гормоны. Глюкокортикоиды.

15. Половые гормоны.

16. Ренин-ангиотензиновая система.

17. Калликреин-кининовая система.

Выполните задания:

1. Либерины:

А. Небольшие пептиды

Б. Взаимодействуют с цитоплазматическими рецепторами.

В. Активируют секрецию тропных гормонов.

Г. Передают сигнал на рецепторы передней доли гипофиза.

Д. Вызывают секрецию инсулина.

2. Выберите неправильное утверждение. цАМФ:

А. Участвует в мобилизации гликогена.

Б. Второй вестник сигнала.

В. Активатор протеинкиназы.

Г. Кофермент аденилатциклазы.

Д. Субстрат фосфодиэстеразы.

3. Расположите события, происходящие при синтезе йодтиронинов, в необходимом порядке, используя цифровые обозначения:

А. Йодирование остатков тирозина в тироглобулине.

Б. Синтез тироглобулина.

В. Конденсация йодированных остатков тирозина.

Г. Транспорт йодтиронинов в клетки-мишени.

Д. Образование комплекса с тироксинсвязывающим белком.

4. Расположите перечисленные метаболиты в порядке их образования:

А. 17-ОН-прогестерон.

Б. Прегненолон.

В. Холестерин.

Г. Прогестерон

Д. Кортизол.

5. Выберите гормон, синтез и секреция которого возрастает в ответ на повышение осмотического давления:

А. Альдостерон.

Б. Кортизол.

В. Вазопрессин.

Г. Адреналин.

Д. Глюкагон.

6. Под влиянием инсулина в печени ускоряются:

А. Биосинтез белков

Б. Биосинтез гликогена.

В. Глюконеогенез.

Г. Биосинтез жирных кислот.

Д. Гликолиз.

7. Для трехдневного голодания верно все ниже перечисленное, кроме:

А. Инсулин-глюкагоновый индекс снижен.

Б. Скорость глюконеогенеза из аминокислот увеличивается.

В. Скорость синтеза ТАГ в печени снижается.

Г. Скорость b-окисления в печени снижается.

Д. Концентрация кетоновых тел в крови выше нормы.

8. При сахарном диабете в печени происходит:

А. Ускорение синтеза гликогена.

Б. Снижение скорости глюконеогенеза из лактата.

В. Снижение скорости мобилизации гликогена.

Г. Повышение скорости синтеза ацетоацетата.

Д. Повышение активности ацетил-КоА-карбоксилазы.

9. При ИНСД у больных наиболее часто обнаруживаются:

А. Гиперглюкоземия.

Б. Снижение скорости синтеза инсулина.

В. Концентрация инсулина в крови в норме или выше нормы.

Г. Антитела к b-клеткам поджелудочной железы.

Д. Микроангиопатии.

ЛАБОРАТОРНАЯ РАБОТА 14

Тема: Построение и анализ гликемических кривых

Цель: Изучить промежуточный обмен углеводов, роль углеводов в энергетическом обмене. Клинико-диагностическое значение метода сахарной нагрузки при сахарном диабете, аддисоновой болезни, гипофункции щитовидной железы и т.д.

Принцип метода : Определение глюкозы основано на реакции, катализируемой глюкозооксидазой:

глюкоза + О 2 глюконолактон + Н 2 О 2

Образующаяся в ходе данной реакции перекись водорода вызывает окисление субстратов пероксидазы с образованием окрашенного продукта.

Метод сахарной нагрузки : Утром натощак у больного берут кровь из пальца и определяют концентрацию глюкозы крови. После этого дают выпить 50 - 100 г глюкозы в 200 мл теплой кипяченой воды (1 г глюкозы на 1 кг веса) в течение не более 5 минут. Затем повторно исследуют содержание глюкозы в крови, беря из пальца кровь через каждые 30 минут в течение 2-3 часов. Строят график в координатах: время – концентрация глюкозы в сыворотке крови, по виду графика ставят или уточняют диагноз.

Ход работы: В образцах сыворотки (до и после приема глюкозы) определяют концентрацию глюкозы. Для этого в серию пробирок вносят 2 мл рабочего реактива (фосфатный буфер, субстраты пероксидазы + глюкозооксидазы в отношении 40:1). В одну из пробирок вносят 0,05 мл стандартного раствора глюкозы концентрации 10 ммоль/л. В другие - по 0,05 мл сыворотки крови, взятой по методу сахарной нагрузки. Растворы встряхивают и инкубируют при комнатной температуре 20 мин.

После инкубации измеряют оптическую плотность растворов на ФЭК при длине волны 490 нм. Кювета с длиной оптического пути, равной 5 мм. Раствор сравнения - рабочий реактив.

Расчет концентрации глюкозы:

С = 10 ммоль/л

где Е оп - оптическая плотность в образцах сыворотки;

Е ст - оптическая плотность стандартного раствора глюкозы

Результат анализа:

График:

Вывод:

Дата: Подпись преподавателя:

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ

Контрольная работа3 Гормональная регуляция обмена веществ

Эффекты, осуществляемые через ц АМФ.

1. через цАМФ гипоталамические либерины (рилизинг-факторы) действуют на секреторный ответ аденогипофиза: АКТГ, ФСГ, ТТГ

2. через цАМФ увеличивается проницаемость для воды в собирательных трубочках под действием АДГ.

3. через цАМФ происходит мобилизация и депонирование жиров, распад гликогена, изменяется функционирование ионных каналов в постсинаптических мембранах. цГМФ - присутствует в клетках в меньшем количестве. цГМФ образуется аналогично см. предыдущий каскад. ГЦ - гуанилатциклаза.

цГМФ вызывает эффекты противоположные цАМФ. Например, в сердечной мышце адреналин стимулирует образование цАМФ, ацетилхолин - цГМФ, т.е. оказывают противоположные действия. Адреналин увеличивает силу и частоту сердечных сокращений. Активность цГМФ зависит от присутствия ионов Са. Через цГМФ действует Na-уретический пептид. Также оксид азота NO, который находится в эндотелии капилляров и способен релаксировать (расслаблять их через цГМФ)

Действие Са как второго посредника связано с повышением концентрации Са 2+ цитоплазме. Концентрация Са может увеличиваться двумя способами:

1. из внутриклеточных депо, например, саркоплазматический ретикулум

2. поступление Са внутрь через управляемые мембранные каналы.

Из внутриклеточных депо Са может высвобождаться под действием инозитол-3-фосфата и в ответ на деполяризацию мембраны, т.е. электрическим стимулом кратковременно открываются кальциевые потенциалзависимые каналы. В некоторых тканях, например, в сердечной мышце число каналов изменяется в результате фосфорилирования белков мембранных каналов цАМФ - зависимой протеинкиназой. Кальциевые каналы активируются химическим способом. Пример, в печени и в слюнных железах приток Са наблюдается при активации а-адренергических рецепторов адреналина. Большая часть Са связывается с белками, небольшая часть находится в ионизированной форме. В клетке существуют специфические белки, такие как кальмодулин или гуанилатциклаза. Они обладают особенностями:

1. у них есть специфические участки связывания с ионами Са, обладающие высоким сродством к Са (даже при низких концентрациях Са)

2. при взаимодействии с Са 2+ они меняют свою конформацию, могут активироваться и вызывать различные аллостерические эффекты.

Каскад - это цепь биохимических реакций, приводящих к усилению первоначального сигнала.

Специфические кальциевые каналы плазматической мембраны или ЭПР активируются различными стимулами. В результате ионы Са 1+ -> внутрь по градиенту -> [Са] увеличивается до 10- 10 моль. Повышение Са активирует несколько путей внутриклеточной регуляции:


1. Са взаимодействует с кальмодулином, затем происходит активация Са - кальмодулинзависимой протеинкиназы. Она переводит белки из неактивного в активное состояние, что приводит к различным клеточным ответам. Пример: в гладких мышечных волокнах может фосфорилировать легкие цепи головки миозина, в результате чего она присоединяется к актину, возникает сокращение.

2. Са может активировать мембранную гуанилатциклазу и способствовать выработке второго посредника цГМФ

3. ионы Са могут активировать С-киназу, тропонин С в поперечно-полосатых мышцах и другие Са-зависимые белки (глицерол - 3 - фосфатДГ)(гликолиз), пируваткиназа (гликолиз); пируваткарбоксилаза (глюконеогенез)

Мембранные липиды в роли вторичных посредников. Общие черты с предыдущими:

1. присутствует G-белок;

2. присутствует фермент, усиливающий сигнал.

Особенность : фосфолипидный компонент мембраны сам служит фосфорилированным предшественником для образования молекул-посредников. Этот предшественник находится в основном на внутренней половине билипидного слоя и называется фосфатидилинозитол-4,5-бифосфат.

Гормон взаимодействует с рецептором, образовавшийся ГР-комплекс, влияет на G-белок, способствуя его связыванию с ГТФ. G-белок активируется и может активировать фосфолипазу, катализирующую гидролиз фосфатидилинозитол-4,5-бифосфат на вторых посредника: диацилглицерол (ДАТ) и инозитол-3-фосфат.

Диацилглицерол-гидрофобный , может перемещаться путем латеральной диффузии и активировать мембранносвязанную С-киназу, для этого рядом должен находиться фосфатидилсерин. С-киназа способна фосфорилировать белки, переводя их из неактивного в активное состояние. ИФЗ растворим в воде -> цитоплазма, здесь он стимулирует высвобождение Са из внутриклеточных депо, т. е. ИФЗ высвобождает третьего посредника ионов Са.

См. Са - как второй посредник. Ионы Са активируют С-киназу, способствуя ее связыванию с мембраной.

Вне связывания с мембраной она неактивна.

Эффекты действия:

АКТГ в коре надпочечников через ИФЗ,

Ангиотензин II

ЛГ в яичниках и клетках Лейдига.

Вам также будет интересно:

Гуляш из говядины с подливкой на сковороде Сколько варить гуляш из телятины
Гуляш из телятины делается в большинстве семей, по-моему, достаточно редко. Просто потому,...
Индейка, фаршированная яблоками, сыром и ананасами Как приготовить филе индейки с ананасом
Мясо индейки содержит максимум животного белка и минимум жира, это один из лучших мясных...
Калорийность готовых блюд
Для того чтобы составить сбалансированный рацион следует изучить калорийность используемых...
Котлеты из печени индейки
Печеночные котлеты — простое, вкусное и быстрое в приготовление блюдо. Для печеночных...
Салат с баклажанами и фасолью на зиму: рецепты Салат из баклажан и фасолью
Лето – не только время садово-огородных работ, но и пора сбора, заготовки овощей на зиму....