Сайт о холестерине. Болезни. Атеросклероз. Ожирение. Препараты. Питание

Планеты на асценденте и мс Марс на асценденте

Формы внутривидовой изоляции

Презентация «Такие разные птицы

Территория фрг.  Германия. Территория Германии: площадь и географическое положение

Презентация к уроку физики Электрические явления в природе презентация к уроку физики (9 класс) на тему Просмотр содержимого презентации «Природные электрические явления»

Салат из говядины отварной

Как приготовить бисквитный торт с фруктами Бисквит с кусочками фруктов

Как испечь немецкий штрудель?

Запеканка в мультиварке творожная с манкой

Замы Министра обороны РФ: имена, звания, достижения Кто руководит и управляет вс рф

Классический рецепт селедки под шубой В форме рыбы

Морской салат — лучшие рецепты

Формы оплаты труда в строительстве Систему оплаты труда в строительно монтажной организации

Cонник косить, к чему снится косить во сне видеть

Сонник: к чему снится коса

Вегетативная иннервация начального отдела толстой кишки. Иннервация желудочно-кишечного тракта (кишечника до сигмовидной кишки)

Кровоснабжение осуществляется ветвями двух систем - верхней и нижней артерий (рис. 19.39). Первая дает ветви: 1) a. ileocolica, которая снабжает конечный отдел подвздошной кишки, червеобразный отросток, слепую и нижнюю части восхо-


Рис. 19.39. Кровоснабжение толстых кишок:

1 - a. mesenterica superior; 2 - a. colica media; 3 - a. colica dextra; 4 - a. ileocolica; 5 - a. mesenter-ica inferior; 6- a. colica sinistra; 7- aa. sigmoideae; 9- a. rectalis superior; 9- a. rectalis media; 70 - a. rectalis inferior

дящей; 2) a. colica dextra снабжает верхнюю часть восходящей ободочной кишки, печеночную кривизну и начальный отдел поперечноободочной кишки; 3) a. colica media проходит между листками брыжейки поперечноободочной кишки и снабжа­ет большую часть этой кишки (артерию надо щадить при операциях, связанных с рассечением брыжейки поперечноободочной кишки или желудочно-ободочной связки). Кроме того, желудочно-ободочная связка, как показывают исследования на трупах и наблюдения во время операций на больных, почти всегда бывает спая­на с брыжейкой поперечноободочной кишки, преимущественно на уровне пило-рической части желудка. В зоне спаяния этих элементов брюшины артериальные аркады, образованные ветвями средней ободочной артерии, расположены вдвое чаще, чем вне этой зоны. Поэтому рассечение желудочно-ободочной связки при операциях на желудке целесообразно начинать на 10-12 см левее привратника во избежание повреждения аркад средней ободочной артерии.


От нижней брыжеечной артерии отходят ветви: 1) a. colica sinistra, снабжающая часть поперечноободочной кишки, селезеночную кривизну ободочной кишки и нисходящую ободочную кишку; 2) аа. sigmoideae, идущие к сигмовидной кишке; 3) a. rectalis superior (a. haemorrhoidalis superior - BNA), идущая к прямой кишке.

Перечисленные сосуды образуют аркады, подобные имеющимся на тонких кишках. Дуга, образовавшаяся при слиянии ветвей средней и левой ободочных ар­терий, проходит между листками брыжейки поперечноободочной кишки и обыч­но хорошо выражена (ее называли прежде риолановой дугой - arcus Riolani). Она снабжает левый конец поперечноободочной кишки, селезеночный изгиб ободоч­ной кишки и начало нисходящей.

При перевязке верхней прямокишечной артерии (в связи с оперативным удале­нием высоко расположенной раковой опухоли прямой кишки) может быть резко нарушено питание начального отрезка прямой кишки. Это возможно потому, что выключается важная коллатераль, связывающая последнюю сосудистую аркаду сигмовидной кишки с a. haemorrhoidalis (a. rectalis - PNA) superior (см. рис. 19.39). Место слияния этой артерии с a. haemorrhoidalis siperior называют «критической точкой» и предлагают перевязывать прямокишечную артерию выше этой точки - тогда кровоснабжение начального отдела прямой кишки не нарушается.


На протяжении сосудов кишечника имеются и другие «критические точки». К их числу относится, например, и ствол a. colica media. Перевязка этой артерии может вызвать омертвение правой половины поперечноободочной кишки, по­скольку артериальные аркады a. colica sinistra обычно не могут обеспечить крово­снабжение этой части кишки (см. рис. 19.39).

Крайние формы ветвления нижней брыжеечной артерии имеют значение в оперативном лече­нии высоко сидящих раков прямой кишки, поскольку при этом приходится производить мобили­зацию сигмовидной кишки с рассечением ее брыжейки и перевязкой a. haemorrhoidalis superior. По­следняя составляет конечную ветвь a. mesenterica inferior. Клинический опыт показывает, что такая операция нередко приводит к гангрене оставшейся после операции части прямой кишки. Суть де­ла заключается в том, что при перевязке верхней прямокишечной артерии может быть резко нару­шено питание начального отрезка прямой кишки. Это возможно потому, что выключается важная коллатераль, связывающая последнюю сосудистую аркаду сигмовидной кишки с a. haemorrhoidalis superior и носящая название a. sigmoidea ima. Место слияния этой артерии с a. haemorrhoidalis supe­rior называют «критической точкой» и предлагают перевязывать прямокишечную артерию выше места соединения ее с названной коллатералью, расположенного чаще всего на уровне мыса.

А. Ю. Созон-Ярошевич показал, что при рассыпной форме строения нижней брыжеечной артерии может наблюдаться не один ствол a. haemorrhoidalis superior, а два или три ствола, причем a. sigmoidea ima в этих случаях соединяется лишь с одним из стволов верхней прямокишечной ар­терии. Отсюда вытекает, что при перевязке артерии выше критической точки, но ниже деления ее на несколько стволов, кровоснабжение части прямой кишки будет нарушено.

Исходя из этого, а также учтя другие моменты (например, возможность врожденного отсутст­вия нижней брыжеечной артерии), А. Ю. Созон-Ярошевич предложил перевязывать при рассып­ной форме строения нижней брыжеечной артерии основной ствол ее. Он считал при этом, что та­кая операция лучше обеспечит доступ крови в конечные ветви нижней брыжеечной артерии (че­рез анастомозы между ветвями верхней и нижней брыжеечных артерий, в частности через a. colica sinistra). Предложение А. Ю. Созон-Ярошевича было с успехом осуществлено при операциях на больных.

Вены сопровождают артерии в виде непарных стволов и относятся к системе воротной вены, за исключением средних и нижних вен прямой кишки, связанных с системой нижней полой вены.

Иннервация толстой кишки осуществляется ветвями верхнего и нижнего брыжеечных сплетений. Из всех отделов кишечника наиболее чувствительной к рефлекторным влияниям зоной является илеоцекальный угол с червеобразным отростком.


Лимфатические узлы, относящиеся к толстой кишке (nodi lymphatici mesocolici), располагаются вдоль артерий, снабжающих кишки. Их можно разде­лить на узлы: 1) слепой кишки и червеобразного отростка; 2) ободочной кишки; 3) прямой кишки.

Узлы слепой кишки расположены, как уже сказано, вдоль ветвей a. ileocolica и ее ствола. Узлы ободочной кишки, подобно мезентериальным, также располага­ются в несколько рядов. Главные узлы ободочной кишки находятся: 1) на стволе а. colica media, в mesocolon transversum, рядом с центральной группой брыжеечных узлов; 2) у начала a. colica sinistra и над ней; 3) по ходу ствола нижней брыжеечной артерии (см. рис. 24.17).

19.8. О некоторых отклонениях в строении и топографии кишок

У истощенных людей, многорожавших женщин и в старческом возрасте нередко наблюдается зна­чительная подвижность duodenum (Ф. И. Валькер).

Среди встречающихся в практике пороков развития кишечника на первом месте стоит мекке-лев дивертикул (diverticulum Meckeli), существующий примерно у 2% людей; это - остаток жел-точно-кишечного протока (ductus omphaloentericus), который обычно к концу 2-го месяца эмбри­ональной жизни зарастает. Дивертикул представляет собой выпячивание стенки подвздошной кишки на стороне, противоположной брыжейке; он располагается в среднем на расстоянии 50 см от слепой кишки (иногда значительно ближе к ней, иногда - дальше).

Формы и размеры дивертикула крайне вариабельны. Наиболее часто встречаются 3 формы дивертикула: 1) открывающийся в виде свища на пупке, 2) связанный с пупком при помощи тяжа, 3) в виде слепого кармана на стенке кишки.

Воспаление дивертикула (дивертикулит) можно принять за аппендицит; нередко меккелев дивертикул бывает причиной непроходимости кишечника.

Что касается толстой кишки, то следует отметить редкие случаи левостороннего положения восходящей кишки или правостороннего положения нисходящей (sinistro и dextropositio coli). Бо­лее часто встречается косой ход поперечноободочной кишки, когда flexura coli dextra располагает­ся вблизи слепой (что следует иметь в виду при аппендэктомии), и длинная брыжейка сигмовид­ной кишки, петли которой заходят в правую половину брюшной полости (при этой форме строе­ния кишки могут наблюдаться завороты ее).

Слепая кишка, начальный отдел восходящей и конечный отдел подвздошной кишки иногда имеют общую брыжейку - mesenterium ileocaecale commune, что может создать условия для заво­рота caecum.

Врожденное расширение сигмовидной кишки (мегасигма), известное под названием болезни Гиршпрунга, обусловлено резким снижением количества ганглиозных клеток ауэрбаховского сплетения в дистальном отделе толстой кишки. Вследствие этого происходит спастическое сокра­щение и сужение прямой кишки, влекущее за собой вторичное резкое расширение сигмовидной кишки.

Тонкая кишка кровоснабжается непарными чревной и краниальной брыжееной артериями. Печеночная артерия, отделившись от чревной, отдает ветви начальной части двенадцатиперстной кишки. Краниальная брыжеечная артерия образует вдоль тощей кишки дугу, от которой отходит к стенке органа множество прямых артерий, анастомозирующих между собой.

Иннервируется тонкий кишечник блуждающим нервом (парасимпатическая нервная система) и постганглионарными ветвями полулунного ганглия (симпатическая нервная система), образующими солнечное сплетение.

3. Капилляры: строение и классификация. Органоспецифичность капилляров.

Капилляры

Кровеносные капилляры наиболее многочисленные и самые тонкие сосуды. В большинстве случаев капилляры формируют сети, однако они могут образовывать петли, а также клубочки.

В обычных физиологических условиях около половины капилляров находится в полузакрытом состоянии. Просвет их сильно уменьшен, но полного закрытия его при этом не происходит. Для форменных элементов крови эти капилляры оказываются непроходимыми, в то же время плазма крови продолжает по ним циркулировать. Число капилляров в определенном органе связано с его общими морфофункциональными особенностями, а количество открытых капилляров зависит от интенсивности работы органа в данный момент.

Выстилка капилляров образована эндотелием, лежащим на базальной мембране. В расщеплениях базальной мембраны эндотелия выявляются особые отросчатые клетки - перициты, имеющие многочисленные щелевые соединения с эндотелиоцитами. Снаружи капилляры окружены сетью ретикулярных волокон и редкими адвентициальными клетками.

Классификация капилляров

По структурно-функциональным особенностям различают три типа капилляров: соматический, фенестрированный и


Синусоидный, или перфорированный.

Наиболее распространенный тип капилляров -соматический . В таких капиллярах сплошная эндотелиальная выстилка и сплошная базальная мембрана. Капилляры соматического типа находятся в мышцах, органах нервной системы, в соединительной ткани, в экзокринных железах.



Второй тип - фенестрированные капилляры. Они характеризуются тонким эндотелием с порами в эндотелиоцитах. Поры затянуты диафрагмой, базальная мембрана непрерывна. Фенестрированные капилляры встречаются в эндокринных органах, в слизистой оболочке кишки, в бурой жировой ткани, в почечном тельце, сосудистом сплетении мозга.

Третий тип - капилляры перфорированного типа , или синусоиды. Это капилляры большого диаметра, с крупными межклеточными и трансцеллюлярными порами (перфорациями). Базальная мембрана прерывистая. Синусоидные капилляры характерны для органов кроветворения, в частности для костного мозга, селезенки, а также для печени.

Билет 25

1. Цитоплазма. Общая морфофункциональная характеристика. Классификация органелл. Строение и функции органелл специального значения.

Цитопла́зма - внутренняя среда клетки, заключенная между плазматической мембраной и ядром. Цитоплазма объединяет все клеточные структуры и способствует их взаимодействию друг с другом.

Она представляет собой не однородное химическое вещество, а сложную, постоянно изменяющуюся физико-химическую систему, характеризующуюся щелочной реакцией и высоким содержанием воды.

В цитоплазме осуществляются все процессы клеточного метаболизма, кроме синтеза нуклеиновых кислот, происходящего в ядре. различают два слоя цитоплазмы. Наружный - эктоплазма Внутренний слой цитоплазмы - эндоплазма

Органеллами называются постоянно присутствующие структуры клетки, которые имеют определенное строение, место расположения и выполняют определенные функции.

Органеллы которые постоянно присутствуют во всех клетках, получили название органеллы общего значения .

Другие органеллы присутствуют только в некоторых клетках в связи с выполнением определенных специфических для данных клеток функций. Такие органеллы называются органеллами специального значения.(реснички, микроворсинки, тонофибриллы; нейрофибриллы, миофибриллы .)

Органеллы цитоплазмы по принципу своего строения разделяются на две группы: мембранные и немембранные:

· Мембранные органеллы представляют собой замкнутые компартменты, ограниченные мембраной, которая представляет собой их стенку.

· Немембранные органеллы не являются клеточными компартментами и имеют иное строение.

Реснички и жгутики Состоят из 2 частей: базального тельца, расположенного в цитоплазме и состоящего из 9 триплетов микротрубочек и аксонемы - выроста над поверхностью клетки, который снаружи покрыта мембраной, а внутри имеет 9 пар микротрубочек, располагающихся по окружности, и одну пару в центре. Между соседними дуплетами имеются поперечные сшивки из белка нексина. От каждого дуплета внутрь отходит радиальная спица. К микротрубочкам центральной части присоединены белки, образующие центральную капсулу. К микротрубочкам присоединен белок динеин (см. выше) Движение клетки, направление движения жидкости над клеткой
Микрофиламенты Тонкие нити, образующие в клетке трехмерную сеть. Состоят из белка актина и ассоциированных с ним белков: фимбрин (связывает в пучки параллельно расположенные филаменты); альфа-актинин и филамин (связывают филаменты, независимо от их пространственной ориентации); винкулин (служит для прикрепления микрофиламентов к внутренней поверхности цитомембраны). Филаменты способны к сборке и разборке. В небольшом количестве в клетке встречаются миозиновые микрофиламенты, сделанные из белка миозина. Вместе с актиновыми они формируют сократительные структуры Поддержание формы клетки, опора для внутриклеточных структур, направление движения внутриклеточных процессов, движение и сокращение клетки, формирование межклеточных контактов. Регуляция функций клетки путем сигнализации от межклеточных контактов о состоянии внеклеточного матрикса
Мкроворсинки- выросты цитоплазмы длиной до 1 мкм и диаметром 0,1 мкм. В их сердцевине есть около 40 пролольно расположенных актиновых филаментов, к верхушке они прикрепляются с помощью белка винкулина, а в цитоплазме заканчиваются в терминальной сети филаментов, где есть и миозиновые филаменты
Промежуточные филаменты Толстые прочные нити толщиной 8–10 нм, образованные из белков - виментина, десмина, нейрофибриллярных белков, кератина; не способны к самосборке-разборке Поддержание формы клетки, упругость клетки, участие в формировании межклеточных контактов

2. Сердечная мышечная ткань. Строение и функции. Источники ра звития и регенерация.

ПП МТ сердечного (целомического) типа - развивается из висцерального листка спланхнатомов, называемой миоэпикардиальной пластинкой.

В гистогенезе ПП МТ сердечного типа различают следующие стадии:

1. Стадия кардиомиобластов.

2. Стадия кардиопромиоцитов.

3. Стадия кардиомиоцитов.

Морфофункциональной единицей ПП МТ сердечного типа является кардиомиоцит (КМЦ). КМЦ контактируя друг с другом конец в конец формируют функциональные мышечные волокна. При этом сами КМЦ отграничены друг от друга вставочными дисками, как особыми межклеточными контактами. Морфологически КМЦ - это высокоспециализированная клетка с локализованным в центре одним ядром, миофибриллы занимают основную часть цитоплазмы, между ними большое количество митохондрий; имеется ЭПС и включения гликогена. Сарколемма (соответствует цитолемме) состоит из плазмолеммы и базальной мембраны, менее выраженной по сравнению с ПП МТ скелетного типа. В отличие от скелетной МТ сердечная МТ камбиальных элементов не имеет . В гистогенезе кардиомиобласты способны митотически делиться и в то же время синтезировать миофибриллярные белки.

Рассматривая особенности развития КМЦ, следует указать, что в раннем детстве эти клетки после разборки (т. е. исчезновения) могут вступить в цикл пролиферации с последующей сборкой акто-миозиновых структур. Это является особенностью развития сердечных мышечных клеток. Однако в последующем способность к митотическому делению у КМЦ резко падает и у взрослых практически равна нулю. Кроме того в гистогенезе с возрастом в КМЦ происходит накопление включений липофусцина. Размеры КМЦ уменьшаются.

Различают 3 разновидности КМЦ:

1. Сократительные КМЦ (типичные) - описание смотри выше.

2. Атипичные (проводящие) КМЦ - образуют проводящую систему сердца.

3. Секреторные КМЦ.


Атипичные (проводящие КМЦ - для них характерно: - слабо развит миофибриллярный аппарат; - мало митохондрий; - содержит больше саркоплазмы с большим количеством включений гликогена. Атипичные КМЦ обеспечивают автоматию сердца, так как часть их, расположенные в синусном узле сердца Р-клетки или водители ритма, способны вырабатывать ритмичные нервные импульсы, вызывающие сокращение типичных КМЦ; поэтому даже после перерезки нервов подходящих к сердцу, миокард продолжает сокращаться своим ритмом. Другая часть атипичных КМЦ проводят нервные импульсы от водителей ритма и импульсы от симпатических и парасимпатических нервных волокон к сократительным КМЦ. Секреторные КМЦ - располагаются в предсердиях; под электронным микроскопом в цитоплазме имеют ЭПС гранулярный, пластинчатый комплекс и секреторные гранулы, в которых содержится натрийуретический фактор или атриопептин – гормон, регулирующий артериальное давление, процесс мочеобразования. Кроме того секреторные КМЦ вырабатывают гликопротеины, которые соединяясь с липопротеинами крови препятствуют образованию тромбов в кровеносных сосудах.

Регенерация ПП МТ сердечного типа. Репаративная регенерация (после повреждений) - очень плохо выражена, поэтому после повреждений (пр.: инфаркт) сердечная МТ замещается соединительнотканным рубцом. Физиологическая регенерация (восполнение естественного износа) осуществляется путем внутриклеточной регенерации - т.е. КМЦ не способны делиться, но постоянно обновляют свои изношенные органоиды, в первую очередь миофибриллы и митохондрии.

3. Селезенка: строение и функции. Эмбриональное и постэмбриональное кроветворение.

Селезенка - гемолимфатический орган. В эмбриональном периоде закладывается из мезенхимы в начале 2-го месяца развития. Из мезенхимы образуются капсула, трабекулы, ретикулярнотканная основа, гладкомышечные клетки. Из висцерального листка спланхнотомов образуется брюшинный покров органа. К моменту рождения в селезенке миелопоэз прекращается, сохраняется и усиливается лимфоцитопоэз.

Строение . Селезенка состоит из стромы и паренхимы. Строма состоит из фиброзно-эластической капсулы с небольшим количеством миоцитов, снаружи покрытой мезотелием, и отходящих от капсулы трабекул.

В паренхиме различают красную пульпу и белую пульпу. Красная пульпа - это основа органа из ретикулярной ткани, пронизана синусоидными сосудами, заполненными форменными элементами крови, преимущественно эритроцитами. Обилие эритроцитов в синусоидах придает красной пульпе красную окраску. Стенка синусоидов покрыта вытянутыми эндотелиальными клетками, между ними остаются значительные щели. Эндотелиоциты располагаются на прерывистой базальной мембране. Наличие щелей в стенке синусоидов дает возможность выхода эритроцитов из сосудов в окружающую ретикулярную ткань. Макрофаги, содержащиеся в большом количестве как в ретикулярной ткани, так и среди эндотелиоцитов синусоидов фагоцитируют поврежденные, стареющие эритроциты, поэтому селезенку называют кладбищем эритроцитов. Гемоглобин погибших эритроцитов доставляется макрофагами в печень (белковая часть - глобин используется при синтезе желчного пигмента билирубина) и красный костный мозг (железосодержащий пигмент - гем передается созревающим эритроидным клеткам). Другая часть макрофагов участвует в клеточной кооперации при гуморальном иммунитете (см. тему "Кровь").

Белая пульпа селезенки представлена лимфатическими узелками. В отличие от узелков других лимфоидных органов лимфатический узелок селезенки пронизывается артерией- a. sentralis. В лимфатических узелках выделяют зоны:

1. Периартериальная зона - является тимусзависимой зоной.

2. Центр размножения - содержит молодые В-лимфобласты (В-зона).

3. Мантийная зона - содержит преимущественно В-лимфоциты.

4. Маргинальная зона - соотношение Т- и В-лимфоцитов = 1:1.

В целом в селезенке В-лимфоциты составляют 60%, Т-лимфоциты - 40%.

Отличия селезенки новорожденных:

1.Слабо развиты капсула и трабекулы.

2. Лимфоидная ткань диффузна, нет четких узелков

3. В имеющихся лимфатических узелках центры размножения не выражены.

Функции селезенки:

1. Участие в лимфоцитопоэзе (Т- и В-лимфоцитопоэз).

2. Депо крови (в основном для эритроцитов).

3. Элиминация поврежденных, стареющих эритроцитов

4. Поставщик железа для синтеза гемоглобина, глобина - для билирубина.

5. Очистка проходящий через орган крови от антигенов.

6. В эмбриональном периоде - миелопоэз.

Регенерация - очень хорошая, но тактику хирурга при повреждениях чаще определяет особенности кровоснабжения, в силу чего очень трудно остановить паренхиматозное кровотечение в органе.

Кровообращение. Артериальная кровь направляется в селезенку по селезеночной артерии. От артерии отходят ветви, идущие внутри крупных трабекул и называющиеся трабекулярными артериями.От трабекулярной артерии отходят артерии мелкого калибра, которые вступают в красную пульпу и называются пульпарными артериями. Вокруг пульпарных артерий образуются удлиненные лимфатические влагалища, по мере отдаления от трабекулы они увеличиваются и принимают шарообразную форму (лимфатический узелок). Внутри этих лимфатических образований от артерии отходит множество капилляров, а сама артерия получает название центральной. По выходе из узелка эта артерия распадается на ряд веточек - кисточковые артериолы. Вокруг конечных участков кисточковых артериол расположены овальные скопления удлиненных ретикулярных клеток (эллипсоиды, или гильзы). В цитоплазме эндотелия эллипсоидных артериол обнаружены микрофиламенты, с которыми связывают способность эллипсоидов сокращаться - функция своеобразных сфинктеров. Артериолы далее разветвляются на капилляры, часть их впадает в венозные синусы красной пульпы (теория закрытого кровообращения). В соответствии с теорией открытого кровообращения артериальная кровь из капилляров выходит в ретикулярную ткань пульпы, а из нее просачивается через стенку в полость синусов. Венозные синусы занимают значительную часть красной пульпы и могут иметь различные диаметр и форму в зависимости от их кровенаполнения. Тонкие стенки венозных синусов выстланы прерывистым эндотелием, расположенным на базальной пластинке. По поверхности стенки синуса в виде колец идут ретикулярные волокна. В конце синуса, на месте перехода его в вену, имеется другой сфинктер.

В зависимости от сокращенного пли расслабленного состояния артериальных и венозных сфинктеров синусы могут находиться в различных функциональных состояниях. При сокращении венозных сфинктеров кровь заполняет синусы, растягивает их стенку, при этом плазма крови выходит через нее в ретикулярную ткань пульпарных тяжей, а в полости синусов накапливаются форменные элементы крови. В венозных синусах селезенки может задерживаться до 1/3 общего количества эритроцитов. При открытых обоих сфинктерах содержимое синусов поступает в кровоток. Нередко это происходит при резком возрастании потребности в кислороде, когда возникают возбуждение симпатической нервной системы и расслабление сфинктеров. Этому также способствует сокращение гладких мышц капсулы и трабекул селезенки.

Отток венозной крови из пульпы происходит по системе вен. Стенка трабекулярных вен состоит только из эндотелия, тесно прилегающего к соединительной ткани трабекул, то есть эти вены не имеют собственной мышечной оболочки. Такое строение трабекулярных вен облегчает выталкивание крови из их полости в селезеночную вену, выходящую через ворота селезенки и впадающую в воротную вену.


Билет 26

1. Межклеточные контакты и их классификации. Синапсы. Строение и функции, механизм передачи нервного импульса

ЗАМЫКАЮЩИЕ

Простой контакт - соединение клеток за счет пальцевидных впячиваний и выпячиваний цитомембран соседних клеток. Специфических структур, формирующих контакт, нет.

Плотный замыкающий контакт - соприкасаются билипидные слои мембран соседних клеток. В области зоны плотных контактов между клетками не проходят практически никакие вещества.

АДГЕЗИОННЫЕ

Межклеточные адгезионные соединения:

Точечные - контакт образуется на небольшом по площади участке цитомембран соседних клеток.

Адгезионные пояски - контакт окружает по периметру всю клетку в виде пояса, располагается в верхних отделах боковых поверхностей эпителиальных клеток.

В области контакта в цитомембрану встроены специальные трансмембранные белки - кадгерины, которые соединяются с кадгеринами другой клетки.

Для соединения кадгеринов нужны ионы кальция.

Со стороны цитоплазмы к кадгеринам присоединяются белки,бета-катенин, альфа-катенин, гамма-катенин, PP-120, EB-1, и к ним присоединяются актиновые микрофиламенты.

Адгезионные соединения между клеткой и внеклеточным матриксом:

В месте контакта в цитомембрану встроены трансмембранные белки альфа- и бета-интегрины, которые соединяются с элементами межклеточного матрикса.

Со стороны цитоплазмы к интегринам присоединяются несколько промежуточных белков (тензин, талин, альфа-актинин, винкулин, паксилин, фокальная адгезионная киназа), к которым присоединяются актиновые микрофиламенты.

Десмосомы:

Контакт образуется на небольшом по площади участке.

В месте контакта в цитомембрану встроены трансмембранные белки десмоглеин и десмоколин, которые соединяются с такими же белками другой клетки.

Для соединения десмоколинов и десмоглеинов нужны ионы кальция.

Со стороны цитоплазмы к десмоколину и десмоглеину присоединяются промежуточные белки - десмоплакин и плактоглобин, к которыем присоединяются промежуточные филаменты.

ПРОВОДЯЩИЕ

Нексусы (щелевидные контакты):

Контакт образуется на небольшом по площади участке.

В месте контакта в цитомембрану встроены трансмембранные белки коннексины, которые соединяются между собой и образуют водный канал в толще мембраны - конексон.

Коннексоны контактирующих клеток соединяются (или сопоставляются), в результате чего между соседними клетками образуется канал, с помощью которого из одной клетки в другую (в обоих направлениях) свободно проходит вода, малые молекулы и ионы, а также электрический ток.

Синапс - это место передачи нервных импульсов с одной нервной клетки на другую нервную или ненервную клетку. В зависимости от локализации окончаний терминальных веточек аксона первого нейрона различают:

· аксодендритические синапсы (импульс переходит с аксона на дендрит),

· аксосоматические синапсы (импульс переходит с аксона на тело нервной клетки),

· аксоаксональные синапсы (импульс переходит с аксона на аксон).

По конечному эффекту синапсы делятся: - тормозные; - возбуждающие.

Электрический синапс - представляет собой скопление нексусов, передача осуществляется без нейромедиатора, импульс может передаваться как в прямом, так и в обратном направлении без какой-либо задержки.

Химический синапс - передача осуществляется с помощью нейромедиатора и только в одном направлении, для проведения импульса через химический синапс нужно время.

Терминаль аксона представляет собой пресинаптическую часть, а область второго нейрона, или другой иннервируемой клетки, с которой она контактирует, - постсинаптическую часть.

В пресинаптической части находятся синаптические пузырьки, многочисленные митохондрии и отдельные нейрофиламенты. Синаптические пузырьки содержат медиаторы: ацетилхолин, норадреналин, дофамин, серотонин, глицин, гамма-аминомасляная кислота, серотонин, гистамин, глютамат. Область синаптического контакта между двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны.

Пресинаптическая мембрана - это мембрана клетки, передающей импульс (аксолемма). В этой области локализованы кальциевые каналы, способствующие слиянию синаптических пузырьков с пресинаптической мембраной и выделению медиатора в синаптическую щель.

Синаптическая щель между пре- и постсинаптической мембранами имеет ширину 20-30 нм. Мембраны прочно прикреплены друг к другу в синаптической области филаментами, пересекающими синаптическую щель.

Постсинаптическая мембрана - это участок плазмолеммы клетки, воспринимающий медиаторы генерирующий импульс. Она снабжена рецептор- ными зонами для восприятия соответствующего нейромедиатора.

2. Хрящевые ткани. Классификация, строение и функции. Рост хряща, его регенерация.

Они выполняют механическую, опорную, защитную функции. ХТ состоит из клеток - хондроцитов и хондробластов и большого количества межклеточного гидрофильного вещества, отличающегося упругостью и плотностью.

Клетки хрящевых тканей представлены хондробластическим дифференом:

1. Стволовая клетка

2. Полустволовая клетка (прехондробласты)

3. Хондробласт

4. Хондроцит

5. Хондрокласт

Стволовая и полустволовая клетка - малодифференцированные камбиальные клетки, в основном локализуются вокруг сосудов в надхрящнице. Дифференцируясь превращаются в хондробласты и хондроциты, т.е. необходимы для регенерации .

Хондробласты - молодые клетки, располагаются в глубоких слоях надхрящницы по одиночке, не образуя изогенные группы. Под световым микроскопом хондробласты уплощенные, слегка вытянутые клетки с базофильной цитоплазмой.

основная функция хондробластов - выработка органической части межклеточного вещества: белки коллаген и эластин, глюкозаминогликаны (ГАГ) и протеогликаны (ПГ). Кроме того, хондробласты способны к размножению и в последующем превращаются в хондроциты. В целом, хондробласты обеспечивают аппозиционный (поверхностный, новообразования снаружи) рост хряща со стороны надхрящницы.

Хондроциты - основные клетки хрящевой ткани, располагаются в более глубоких слоях хряща в полостях - лакунах. Хондроциты могут делиться митозом, при этом дочерние клетки не расходятся, остаются вместе - образуются так называемые изогенные группы. Первоначально они лежат в одной общей лакуне, затем между ними формируется межклеточное вещество и у каждой клетки данной


изогенной групы появляется своя капсула. Хондроциты - овально-округлые клетки с базофильной цитоплазмой.

основная функция хондроцитов - выработка органической части межклеточного вещества хрящевой ткани. Рост хряща за счет деления хондроцитов и выработки ими межклеточного вещества обеспечивает интерстициальный (внутренний) рост хряща.

В хрящевой ткани кроме клеток образующих межклеточное вещество есть и их антогонисты - разрушители межклеточного вещества - это хондрокласты (можно отнести к макрофагической системе): доволно крупные клетки, в цитоплазме много лизосом и митохондрий. Функция хондрокластов - разрушение поврежденных или изношенных участков хряща.

Межклеточное вещество хрящевой ткани содержит коллагеновые, эластические волокна и основное вещество. Основное вещество состоит из тканевой жидкости и органических веществ: - ГАГ (хондроэтинсульфаты, кератосульфаты, гиалуроновая кислота, липиды. Межклеточное вещество обладает высокой гидрофильностью, содержание воды доходит до 75% массы хряща, это обуславливает высокую плотность и тургор хряща. Хрящевые ткани в глубоких слоях не имеют кровеносных сосудов, питание осуществляется диффузно за счет сосудов надхрящницы.

Надхрящница - это слой соединительной ткани, покрывающий поверхность хряща. В надхрящнице выделяют наружный фиброзный (из плотной неоформленной СТ с большим количеством кровеносных сосудов) слой и внутренний клеточный слой , содержащее большое количество стволовых, полустволовых клеток и хондробластов.

Эмбриональный хондрогистогенез Источником развития хрящевых тканей является мезенхима.

I. Образование хондрогенного зачатка, или хондрогенного островка.

В некоторых участках тела зародыша, где образуется хрящ, клетки мезенхимы теряют свои отростки, усиленно размножаются и, плотно прилегая друг к другу, создают определенное напряжение - тургор. Находящиеся составе островка стволовые клетки дифференцируются в хондробласты. Эти клетки являются главным строительным материалом хрящевой ткани. В их цитоплазме сначала увеличивается количество свободных рибосом, затем появляются участки гранулярной эндоплазматической сети.

II. Образования первичной хрящевой ткани.

Клетки центрального участка (первичные хондроциты) округляются, увеличиваются в размере, в их цитоплазме развивается гранулярная эндоплазматическая сеть, с участием которой происходят синтез и секреция фибриллярных белков (коллагена). Образующееся таким образом межклеточное вещество отличается оксифилией.

III. Стадии дифференцировки хрящевой ткани.

Хондроциты приобретают способность синтезировать гликозаминогликаны, кроме упомянутых ранее фибриллярных белков, главным образом сульфатированные (хондроитинсульфаты), связанные с неколлагеновыми белками (протеогликаны).

Тип хряща МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО Локализация
Волокна Основное вещество
гиалиновый хрящ коллагеновые волокна (коллаген II, VI, IX, X, XI типов) гликозаминогликаны и протеогликаны трахея и бронхи, суставные по-верхности, гор-тань, соединения ребер с грудиной
эластический хрящ эластические и коллагено-вые волокна ушная раковина, рожковидные и клиновидные хрящи гортани, хрящи носа
волокнистый хрящ параллельные пучки коллагеновых волокон; содержание волокон боль-ше, чем в др. видах хряща места перехода сухожилий и связок в гиали-новый хрящ, в межпозвоночных дисках, полупо-движные сочле- нения, симфиз
в межпозвоночном диске: снаружи располагается фиброзное кольцо- содержит преимущественно волокна, имеющие циркулярный ход; а внутри имеется студенистое ядро- состоит из гликозаминогликанов и протеогликанов и плавающих в них хрящевых клеток

Гиалиновый хрящ

1. В действительности в межклеточном веществе имеется большое количество коллагеновых волокон, у которых коэффициент преломления одинаковый с коэффициентом преломления основного вещества, поэтому коллагеновые волокна под микроскопом не видимы, т.е. они маскированы.

2. вокруг изогенных групп имеется четко выраженная базофильная зона - так называемый территориальный матрикс . Это связано с тем, что хондроциты выделяют в большом количестве ГАГ с кислой реакцией, потому этот участок окрашивается основными красками, т.е. базофильна. Слабооксифильные участки между территориальными матриксами называются интертерриториальным матриксом .

Структурной особенностью гиалинового хряща суставной поверхности является отсутствие надхрящницы на поверхности, обращенной в полость сустава.

Эластический хрящ

Особенности :

· в межклеточном веществе кроме коллагеновых волокон имеется большое количество беспорядочно расположенных эластических волокон, что придает эластичность хрящу;

· содержит много воды;

· не обызвествляется (не откладываются минеральные вещества).

Волокнистый хрящ

Расположен в местах прикрепления сухожилий к костям и хрящам, в симфизе и межпозвоночных дисках. По строению занимает промежуточное положение между плотной оформленной соединительной и хрящевой тканью.

Отличие от других хрящей: в межклеточном веществе гораздо больше коллагеновых волокон, причем волокна расположены ориентированно - образуют толстые пучки, хорошо видимые под микроскопом, постепенно разрыхляющиеся и переходящие в гиалиновый хрящ. Хондроциты чаще лежат по одиночке вдоль волокон, не образуя изогенные группы.

Вегетативная иннервация органов

Иннервация глаза. В ответ на определенные зрительные раздражения, идущие от сетчатки, осуществляется конвергенция и аккомодация зрительного аппарата.

Конвергенция глаз - сведение зрительных осей обоих глаз на рассматриваемом предмете - происходит рефлекторно, сочетанным сокращением поперечнополосатых мышц глазного яблока. Этот рефлекс, необходимый для бинокулярного зрения, связан с аккомодацией глаза. Аккомодация - способность глаза ясно видеть предметы, находящиеся от него на различных расстояниях, - зависит от сокращения гладкой мускулатуры - m. ciliaris и m. sphincter pupillae. Поскольку деятельность гладкой мускулатуры глаза осуществляется совместно с сокращением его поперечнополосатых мышц, вегетативная иннервация глаза будет рассмотрена вместе с анимальной иннервацией его двигательного аппарата.



Афферентным путем от мышц глазного яблока (проприоцептивная чувствительность) являются, по одним авторам, сами анимальные нервы, иннервирующие данные мышцы (III, IV, VI головные нервы), по другим - n. ophthalmicus (n. trigemini).

Центры иннервации мышц глазного яблока -ядра III, IV и VI пар. Эфферентный путь - Ill, IV и VI головные нервы. Конвергенция глаза осуществляется, как указывалось, сочетанным сокращением мышц обоих глаз.

Надо иметь в виду, что изолированных движений одного глазного яблока вообще не существует. В любых произвольных и рефлекторных движениях всегда участвуют оба глаза. Эта возможность сочетанного движения глазных яблок (взора) обеспечивается особой системой волокон, связывающей между собой ядра III, IV и VI нервов и носящей название медиального продольного пучка.

Медиальный продольный пучок начинается в ножках мозга от ядра Даркшевича(см. с. 503,504),соединяется с ядрами III, IV, VI нервов при помощи коллатералей и направляется по мозговому стволу вниз в спинной мозг, где заканчивается, по-видимому, в клетках передних рогов верхних шейных сегментов. Благодаря этому движения глаз сочетаются с движениями головы и шеи.

Иннервация гладких мышц глаза - m. sphincter pupillae и m. ciliaris, осуществляющих аккомодацию глаза, происходит за счет парасимпатической системы; иннервация m. dilatator pupillae - за счет симпатической. Афферентными путями вегетативной системы является п. oculomotorius и n. ophthalmicus.

Эфферентная парасимпатическая иннервация Преганглионарные волокна идут из ядра Якубовича (мезенцефаличеекий отдел парасимпатической нервной системы) в составе n. oculomotorius и по его radix oculomotoria достигают ganglion ciliare (рис. 343), где и оканчиваются.

В ресничном узле начинаются постганглионарные волокна, которые через nn. ciliares breves доходят до ресничного мускула и круговой мышцы радужной оболочки. Функция: сужение зрачка и аккомодация глаза к дальнему и близкому видению.

Преганглионарные волокна идут из клеток nucleus intermediolateralis боковых рогов последнего шейного и двух верхних грудных сегментов (CvII - Th11, centrum ciliospinale), выходят через две верхние грудные rami communicantes albi, проходят в составе шейного отдела симпатического ствола и кончаются в верхнем шейном узле. Постганглионарные волокна идут в составе n. caroticus internus в полость черепа и вступают в plexus caroticus internus и plexus ophtalmicus; после этого часть волокон проникает в ramus communicans, соединяющуюся с n. nasociliaris и nervi ciliares longi, а часть направляется к ресничному узлу, через который проходит, не прерываясь, в nervi ciliares breves. И те и другие симпатические волокна, проходящие через длинные и короткие ресничные нервы, достигают радиальной мышцы радужной оболочки. Функция: расширение зрачка, а также сужение сосудов глаза.

Иннервация желез слезной и слюнных. Афферентным путем для слезной железы является n. lacrimalis (ветвь п. ophthalmicus от n. trigemini), для подчелюстной и подъязычной - n. Iingualis (ветвь n. mandibularis от n. trigemini) и chorda tympani (ветвь n. intermedins), для околоушной - n. auriculotemporalis и n. glossopharyngeus.

Эфферентная парасимпатическая иннервация слезной железы . Центр лежит в верхнем отделе продолговатого мозга и связан с ядром промежуточного нерва (nucleus salivatorius superior). Преганглионарные волокна идут в составе n. intermedius, далее n. petrosus major до ganglion pterygopalatinum (рис. 344).

Отсюда начинаются постганглионарные волокна, которые в составе n. maxillaris и далее его ветви n. zygomatics через связи с n. lacrimalis достигают слезной железы.

Эфферентная парасимпатическая иннервация подчелюстной и подъязычной желез . Преганглионарные волокна идут от nucleus salivatorius superior в составе n. intermedius, далее chorda tympani и n. lingualis до ganglion submandibular, откуда начинаются постганглионарные волокна, достигающие желез в составе язычного нерва.

Эфферентная парасимпатическая иннервация околоушной железы. Преганглионарные волокна идут от nucleus salivatorius inferior в составе n. glossopharyngeus, далее n. tympanicus, n. petrosus minor до ganglion oticum (рис. 345).

Отсюда начинаются постганглионарные волокна, идущие к железе в составе n. auriculotemporalis. Функция: усиление секреции слезной и названных слюнных желез; расширение сосудов желез.

Эфферентная симпатическая иннервация всех названных желез. Преганглионарные волокна начинаются в боковых рогах верхних грудных сегментов спинного мозга и заканчиваются в верхнем шейном узле. Постганглионарные волокна начинаются в названном узле и доходят до слезной железы в составе plexus caroticus internus, до околоушной - в составе plexus caroticus externus и до подчелюстной и подъязычной желез - через plexus caroticus externus и затем через plexus facialis. Функция: задержка отделения слюны (сухость во рту). Слезотечение (влияние не резкое).

Иннервация сердца (рис. 346).

Афферентные пути от сердца идут в составе n. vagus, а также в среднем и нижнем шейных и грудных сердечных симпатических нервах. При этом по симпатическим нервам проводится чувство боли, а по парасимпатическим - все остальные афферентные импульсы.

Преганглионарные волокна начинаются в дорсальном вегетативном ядре блуждающего нерва и идут в составе последнего, его сердечных ветвей (rami cardiaci n. vagi) и сердечных сплетений до внутренних узлов сердца, а также узлов околосердечных полей. Постганглионарные волокна исходят от этих узлов к мышце сердца. Функция: торможение и угнетение деятельности сердца. Сужение коронарных артерий.

И. Ф. Цион в 1866 г. открыл «сердечночувствующий» нерв, идущий в составе блуждающего нерва центростремительно. С этим нервом связано понижение кровяного давления, отчего он назван n. depressor.

Эфферентная симпатическая иннервация. Преганглионарные волокна начинаются из боковых рогов спинного мозга 4-5 верхних грудных сегментов, выходят в составе соответственных rami communicantes albi и проходят через симпатический ствол до пяти верхних грудных и трех шейных узлов. В этих узлах начинаются постганглионарные волокна, которые в составе сердечных нервов, nn. cardiaci, cervicales superior, medius et inferior и nn. cardiaci thoracici, достигают сердечной мышцы. По данным К. М. Быкова и др. , перерыв осуществляется только в ganglion stellatum. По описанию Г. Ф. Иванова, сердечные нервы содержат в своем составе преганглионарные волокна, которые переключаются на постганглионарные в клетках сердечного сплетения. Функция: усиление работы сердца и ускорение ритма, расширение венечных сосудов.

Иннервация легких и бронхов. Афферентными путями от висцеральной плевры являются легочные ветви грудного отдела симпатического ствола, от париетальной плевры - nn. intercostales и n. phrenicus, от бронхов - n. vagus.

Эфферентная парасимпатическая иннервация. Преганглионарные волокна начинаются в дорсальном вегетативном ядре блуждающего нерва и идут в составе последнего и его легочных ветвей к узлам plexus pulmonalis, а также к узлам, расположенным по ходу трахеи, бронхов и внутри легких. Постганглионарные волокна направляются от этих узлов к мускулатуре и железам бронхиального дерева. Функция: сужение просвета бронхов и бронхиол и выделение слизи; расширение сосудов.

Эфферентная симпатическая иннервация. Преганглионарные волокна выходят из боковых рогов спинного мозга верхних грудных сегментов (Th2-Th6) и проходят через соответствующие rami communicantes albi и симпатический ствол к звездчатому и верхним грудным узлам. От последних начинаются постганглионарные волокна, которые проходят в составе легочного сплетения к бронхиальной мускулатуре и кровеносным сосудам. Функция: расширение просвета бронхов. Сужение и иногда расширение сосудов.

Иннервация желудочно-кишечного тракта (до сигмовидной кишки), поджелудочной железы, печени. Афферентные пути от указанных органов идут в составе n. vagus, n. splanchnicus major et minor, plexus hepaticus, plexus celiacus, грудных и поясничных спинномозговых нервов, а по данным Ф. П. Полякина и И. И. Шапиро, и в составе n. phrenicus.

По симпатическим нервам передается чувство боли от этих органов, по n. vagus - другие афферентные импульсы, а от желудка - чувство тошноты и голода.

Эфферентная парасимпатическая иннервация. Преганглионарные волокна из дорсального вегетативного ядра блуждающего нерва проходят в составе последнего до терминальных узлов, находящихся в толще названных органов. В кишечнике - это клетки кишечных сплетений (plexus myentericus, submucosus). Постганглионарные волокна идут от этих узлов к гладким мышцам и железам. Функция: усиление перистальтики желудка, расслабление сфинктера привратника, усиление перистальтики кишок и желчного пузыря. По отношению к секреции в составе блуждающего нерва имеются волокна, возбуждающие и тормозящие ее. Расширение сосудов.

Эфферентная симпатическая иннервация. Преганглионарные волокна выходят из боковых рогов спинного мозга V-XII грудных сегментов, идут по соответствующим rami communicantes albi в симпатический ствол и далее без перерыва в составе nn. splanchnici majores (VI-IX) до промежуточных узлов, участвующих в образовании солнечного и нижнего брыжеечного сплетений (ganglia celiaca и ganglion mesentericum superius et inferius). Отсюда возникают постганглионарные волокна, идущие в составе plexus celiacus и pi. tеsentericus superior к печени, pancreas, к тонкой кишке и к толстой до середины colon transversum; левая половина colon transversum и colon descendens иннервируются plexus mesentericus inferior. Указанные сплетения снабжают мускулатуру и железы названных органов. Функция: замедление перистальтики желудка, кишок и желчного пузыря, сужение просвета кровеносных сосудов и угнетение секреции желез.

К этому нужно прибавить, что задержка движений в желудке и кишечнике достигается также и тем, что симпатические нервы вызывают активное сокращение сфинктеров: sphincter pylori, сфинктеры кишечника и др.

Иннервация сигмовидной и прямой кишки и мочевого пузыря . Афферентные пути идут в составе plexus mesentericus inferior, plexus hypogastrics superior и inferior и в составе nn. splanchnici pelvini.

Эфферентная парасимпатическая иннервация. Преганглионарные волокна начинаются в боковых рогах спинного мозга II-IV крестцовых сегментов и выходят в составе соответствующих передних корешков спинномозговых нервов. Далее они идут в виде nn. splanch-nici pelvini до внутриорганных узлов названных отделов толстой кишки и околоорганных узлов мочевого пузыря. В этих узлах начинаются постганглионарные волокна, которые достигают гладкой мускулатуры названных органов. Функция: возбуждение перистальтики сигмовидной и прямой кишок, расслабление m. sphincter ani internus, сокращение m. detrusor urinae и расслабление т. sphincter vesicae.



Эфферентная симпатическая иннервация. Преганглионарные волокна идут от боковых рогов поясничного отдела спинного мозга через соответствующие передние корешки в rami communicantes albi, проходят, не прерываясь, через симпатический ствол и достигают ganglion mesentericum inferius. Здесь начинаются постганглионарные волокна, идущие в составе nn. hypogastrici до гладкой мускулатуры названных органов. Функция: задержка перистальтики сигмовидной и прямой кишок и сокращение внутреннего сфинктера прямой кишки. В мочевом пузыре симпатические нервы вызывают расслабление m. detrusor urinae и сокращение сфинктера мочевого пузыря.

Иннервация половых органов : симпатическая, парасимпатическая. Иннервация других внутренних органов приводится после их описания.

Иннервация кровеносных сосудов. Степень иннервации артерий, капилляров и вен неодинакова. Артерии, у которых более развиты мышечные элементы в tunica media, получают более обильную иннервацию, вены - менее обильную; v. cava inferior и v. portae занимают промежуточное положение.

Более крупные сосуды, расположенные внутри полостей тела, получают иннервацию от ветвей симпатического ствола, ближайших сплетений вегетативной системы и прилежащих спинномозговых нервов; периферические же сосуды стенок полостей и сосуды конечностей получают иннервацию от проходящих поблизости нервов. Нервы, подходящие к сосудам, идут сегментарно и образуют периваскулярные сплетения, от которых отходят волокна, проникающие в стенку и распределяющиеся в адвентиции (tunica externa) и между последней и tunica media. Волокна снабжают мышечные образования стенки, имея различную форму окончаний. В настоящее время доказано наличие рецепторов во всех кровеносных и лимфатических сосудах.

Первый нейрон афферентного пути сосудистой системы лежит в межпозвонковых узлах или узлах вегетативных нервов (nn. splanchnici, n. vagus); далее он идет в составе кондуктора интероцептивного анализатора. Сосудодвигательный центр лежит в продолговатом мозгу. К регуляции кровообращения имеют отношение globus palliaus, зрительный бугор, а также серый бугор. Высшие центры кровообращения, как и всех вегетативных функций, заложены в коре моторной зоны головного мозга (лобная доля), а также впереди и сзади нее. По новейшим данным, корковый конец анализатора сосудистых функций располагается, по-видимому, во всех отделах коры. Нисходящие связи головного мозга со стволовыми и спинальными центрами осуществляются, по-видимому, пирамидными и экстрапирамидными трактами.

Замыкание рефлекторной дуги может происходить на всех уровнях центральной нервной системы, а также в узлах вегетативных сплетений (собственная вегетативная рефлекторная дуга).

Эфферентный путь вызывает вазомоторный эффект - расширение или сужение сосудов. Сосудосуживающие волокна проходят в составе симпатических нервов, сосудорасширяющие волокна идут в составе всех парасимпатических нервов краниального отдела вегетативной системы (III, VII, IX, X), в составе задних корешков спинномозговых нервов (признается не всеми) и парасимпатических нервов сакрального отдела (nn. splanchnici pelvini).

Лекция 30
ИННЕРВАЦИЯ КИШЕЧНИКА. - ДЕФЕКАЦИЯ. - ВСАСЫВАНИЕ, МЕТОДИКА ИССЛЕДОВАНИЯ. - ВСАСЫВАНИЕ СОЛЕВЫХ РАСТВОРОВ И КРОВЯНОЙ СЫВОРОТКИ. - ПУТИ ВСАСЫВАНИЯ

В прежнее время на зависимость движения кишек от нервов смотрели так, что блуждающий нерв считали двигательным нервом, а n. splanchnicus задерживающим. Теперь вопрос относительно иннервации кишек чрезвычайно усложнился, но в целом остается еще распространенным то мнение, что блуждающий нерв есть двигательный нерв, а n. splanchnicus - задерживающий нерв. Что же касается детальной обстановки опытов, подробностей, то нужно заметить следующее. Если прямо раздражать блуждающий нерв, то часто вы не заметите у животного появления движения кишек или получите нечто неясное, неопределенное. Опыт идет лучше, если предварительно перерезать n. splanchnicus, т. е. симпатический нерв. Тогда действие вагуса выступает отчетливее. Как это понимать? А понимать это надо таким образом. У голодного животного, которое ничего не переваривает, пищеварительный канал находится в покое. Этот покой обусловливается действием задерживающего нерва.
Поэтому, если у голодного животного, у которого действуют задерживающие нервы, вы раздражаете вагус, то вы встретите антагонистическое действие со стороны n. splanchnicus. Получается «борьба» нервов, и общая картина, конечные результаты становятся неопределенными. Поэтому, для того чтобы при раздражении вагуса получить отчетливое возбуждение кишек, надо сперва избавиться от влияния задерживающих нервов. Этот факт должен вам напомнить другой факт, который я уже сообщал, именно - относительно секреции кишечного сока. Там я говорил, что единственный известный факт заключается в том, что после перерезки брыжеечных нервов наблюдается беспрерывное отделение кишечного сока. Это последнее явление надо понимать таким образом, что от нервов исходит задерживающее влияние; когда же вы их перерезаете, то отделение сока идет без задержки и делается весьма обильным.
Значит, в данном случае мы имеем факт, аналогичный прежним. Здесь тоже выходит, что постоянное действие нервов - задерживающее.
Следовательно, как в отношении секреции кишек, так и в отношении их движения, мы видим несколько другой план нормальной деятельности нервов. Здесь действие нервов задерживающее, а не возбуждающее, не такое, как, например, на скелетной мускулатуре. В существовании задерживающей функции n. splanchnicus можно поэтому убедиться и в положительной форме. Если имеют место движения на кишечнике, вызванные или путем раздражения нервов, или иным путем, то раздражение n. splanchnicus поведет к остановке этих движений. Следовательно, действие n. splanchnicus доказывается двояким путем: и путем остановки движения кишек при его раздражении и путем появления отчетливых движений после перерезки при раздражении вагуса.
Эта глава о движении кишечника, как видите, много короче предыдущих. Она не проще, но фактов здесь меньше. Дело в том, что многие вопросы здесь далеко еще не исчерпаны, но скудость фактов зависит от того, что физиологи мало занимались этой областью и не по надлежащему плану.
По порядку мне осталось сказать еще о тех фактах, которые касаются выбрасывания остатков пищи вон, о дефекации, испражнении. Это происходит через большие промежутки времени, что становится возможным потому, что имеются особые замки, сфинктеры. Сфинктеры иннервируются особыми нервами, находятся под влиянием специальной нервной системы, притом под влиянием нервов двух сортов: задерживающих и возбуждающих.
Когда происходит акт дефекации, то сфинктеры раздражаются, что ведет к их расслаблению и к открытию заднепроходного отверстия. А когда дефекацию нужно не допустить, то происходит сильное сокращение сфинктеров. Нервные волокна, иннервирующие сфинктеры, идут в n. hypogastricus и в n. errigens.
Акт дефекации рефлекторный. Потребность в испражнении дает о себе знать через чувствительные нервы, рассеянные в прямой кишке. Что же касается центров, благодаря которым совершается рефлекс, то их несколько: в нижнем отделе кишечника, в спинном мозгу и даже в головном. Инстанции нервных центров расположены, значит, в нескольких этажах. В этом можно убедиться клиническими данными, лабораторными наблюдениями и по собственному опыту. Надо признать сначала ближайшие центры самого кишечника, затем центры в спинном мозгу и, наконец, центры в больших полушариях. Низшие центры состоят из ганглиев в брюшной полости. Что такие центры существуют и их необходимо признать, это доказывается тем, что если у животного разрушить весь спинной мозг, начиная с первых грудных или даже шейных частей, то у такого животного без спинного мозга вначале наблюдается полное расстройство испражнительного механизма, но постепенно все принимает нормальный характер. Очевидно, для сфинктеров нашелся заведывающий аппарат, нашлись центры. Их и надо полагать в низших центрах брюшной полости.
Займемся теперь опытом. Перед нами кролик, отравленный хлоралгидратом. У него вскрыта брюшная полость, а n. vagus взят на лигатуру. При раздражении вагуса видны движения кишек и маятникообразные и перистальтические. Опыт не совсем удался, так как не перерезан n. splanchnicus и получилась борьба задерживающего и двигательного нервов. Я продолжаю относительно иннервации сфинктеров anus. Итак, первая иннервация, где происходит перенос центростремительных раздражений на центробежные, находится в каком-нибудь ганглии вне центральной нервной системы. Следующая инстанция - отдел поясничного мозга. В этом легко убедиться как на животных, так и по клиническим наблюдениям. Клиницистам известен такой факт, что при заболеваниях спинного мозга человек испражняется часто помимо своей воли. Если у животного разрушить позвоночный отдел мозга, то тоже получается нарушение в акте испражнения.
Затем, как это мы знаем по собственному опыту, последняя, самая высшая инстанция нервных центров доходит до больших полушарий. У людей и у массы животных акт испражнения совершенно произволен. Это служит доказательством того, что рефлекторная дуга может замыкаться и через большие полушария.
Итак, для такого, повидимому, простого дела, как дефекация, существует, как мы видели, такой сложный рефлекторный акт. Этим я и закончу изложение вопроса о двигательной работе пищеварительного канала.
Перехожу теперь к третьей работе пищеварительного аппарата - всасывательной работе. Процесс всасывания тесно примыкает к работе переваривания и движения. Благодаря перевариванию пища упрощается по своему химическому составу, а благодаря движениям кишек она размазывается, продвигается по всему пищеварительному каналу. Все это имеет целью сделать пищу годной для всасывания. До тех пор, пока принятые нами питательные вещества остаются в желудке и кишках, они являются внешними веществами для организма и могут быть легко удалены из него. Только тогда, когда они переходят вглубь, за стенки кишек, они становятся достоянием организма.
Относительно всасывания многие ученые начали высказывать свои мнения уже давно, но еще и до сих пор этот вопрос вполне не выяснен и является своего рода яблоком раздора между физиологами.
Вы знаете из физики, что через проницаемые и полупроницаемые перепонки вещества переходят из одного сосуда в другой. Это - так называемые диффузионные и осмотические явления. Так вот, когда физиологи дошли до процесса всасывания, то они считали, что дело тут обстоит просто: прохождение обработанной пищи через стенки кишек происходит так, как через мертвые перепонки. Как вам уже должно быть известно о химизме пищеварения, все содержимое пищеварительного тракта, по крайней мере то, что организм собирается усвоить в своих целях, переходит в раствор. Окончательная цель химизма: превратить все в растворенные, легко диффундирующие вещества. Естественно, что физиологам и приходила мысль, что дальше, когда переваривание закончено, происходит простое прохождение пищи через стенки кишек в глубь организма. Однако дело оказалось не таким простым.
Да, вот маленькое замечание. Я вам передал факты, относящиеся к секреторной и двигательной деятельности пищеварительных органов и перешел к всасывательной деятельности. Но один отдел я упустил, внимательно слушающие меня могли это заметить. Это отдел, относящийся к подробной химии пищеварения. После того как я сказал о ферментах, о том, как они действуют, следовало бы по порядку изучить, как реально происходит обработка поступающих веществ в пищеварительном канале. Например, сколько в каждом отделе переваривается белков, жиров, углеводов, какие продукты разложения можно открыть здесь и там и т. д. Факты эти, конечно, очень интересны и имеют прямое отношение к тому, что я вам читаю, но я их опускаю, так как они относятся к области физиологической химии. Все это, безусловно, одна и та же физиология, но предмет очень разросся и из удобства об одном вам говорит физиолог, а о другом химико-физиолог. Все это вам будет сообщено в свое время, а я перехожу к вещам, которые касаются моей кафедры.
Так вот, значит, всасывание - это переход приготовленных веществ в глубь тела для смешения с соками тела и для вхождения в состав живого вещества.
Сначала были расположены рассматривать этот переход как явления осмоса. Правда, это было еще в сороковых-пятидесятых годах прошлого столетия. До тридцатых-сороковых годов в физиологии господствовало понятие, очень вредное и противонаучное, именно - думали о какой-то особой «жизненной силе». Это был так называемый витализм. На все, что бы ни случилось в животном организме непонятного, ответ был один, что это делает «жизненная сила». Это слово в то время объясняло все и изгоняло всякую нужду в строго научном объяснении. Понятно, что этот витализм только закрывал путь для настоящего научного исследования, которое сводит сложные явления к более простым, установленным уже или данной наукой - физиологией, или другими науками: механикой, физикой, химией и т. д. Когда физиологи осознали, что «жизненная сила» - пустое слово, никому не нужное и ничего не объясняющее, то они начали все явления жизни, все физиологические факты сводить на явления физические и химические. Задачей физиологического исследования стало - объяснить все физико-химическими законами. В этом видели настоящую научную задачу. Физиологи ухватились за новую идею. В это время для многих процессов были предложены физико-химические объяснения. Для многих грубых явлений эти объяснения оказались очень подходящими. К более тонкой физиологии, например к жизни клетки, эти объяснения не подошли и были вскоре оставлены и забыты. Это и понятно. Пищеварительная, например, деятельность, как вы видите, есть настоящая химическая деятельность, которую и надо изучать чисто химическими методами. То же, как увидите дальше, можно сказать и о кровообращении, о работе сердца. Там происходят чисто физические процессы. Представление о сердце, грубое представление как о насосе, вполне подходящее. Все физико-химические объяснения, приложенные к крупным частям, к целым органам, оказались вполне удачными и приемлемыми, а приложенные к тонким частям, к клетке - оказались неверными и все впоследствии отпали. Объясняется это тем, что деятельность крупного органа мы более знаем, ее легче изучить, к макроскопическому органу легче подойти. Деятельность же клетки нам почти совсем не известна. Понятно, что объяснения работы тех органов, которые мы знаем, оказались подходящими, а объяснения того, чего не знаем, неподходящими.
Так вот, всасывание через стенку кишек представлялось сначала простым актом, на него смотрели как на простой осмос. Но по мере того, как с предметом знакомились ближе, выявилось большое расхождение между тем, что давала для понимания физика, и тем, что было в действительности. Теперь по всей линии имеются отступления от чисто физических объяснений. Дело надо понимать так, что за выступившими деталями пока не видно закона. Безусловно, ни один из физико-химических законов не нарушается живым существом. Но, кроме физико-химических, здесь есть и свои законы, очень сложные, а мы их пока еще не понимаем, они закрыты массой деталей, подробностей, смысл которых нам не вполне ясен.
Наклонность физиологов всю деятельность организма сводить на физико-химические законы, давать всему физическое объяснение вызвала в конце концов реакцию. Так бывает всегда при одностороннем увлечении чем-нибудь. Эта реакция, этот поворот носит в науке название неовитализма, нового витализма. Фактически воскрешение витализма обозначает только то, что физико-химическое объяснение, расцветшее в конце пятидесятых годов, дало много плохих толкований и оказалось неприложимым к клеточной физиологии. Тогда противоположное мнение подняло голову. Но это значит только то, что мы не знаем еще всего, что не выработаны еще средства, чтобы повести строго научный анализ жизни клетки, повести дело так, как мы его уже ведем с крупными органами. И, конечно, появление неовитализма нельзя понимать так, будто мы из крупных органов изгнали «жизненную силу», а в мелких она осталась. Это лишь показывает состояние нашего знания. Клеточная физиология еще только начинает развиваться, получаются только первые отрывочные факты. Известно, что было время, когда и деятельность больших органов казалась таинственной и не подходила под физико-химическое понимание. А теперь мы орудуем исключительно с этими понятиями и никаких других не вводим. Теперь вся «таинственность» обнаружена и повторяется у нас в химических стаканах. Вы изучаете ряд ферментов, и их химическая работа проходит в пробирках на ваших глазах.
Пройдет 10-20 лет, и все ферменты будут изучены со стороны своей химической натуры. Пойдет вперед и клеточная физиология. Вот как надо понимать те случаи, когда физико-химические объяснения оказываются в настоящее время не приложимы. Это значит, что еще не дошел черед, что мы еще не все знаем. Понятное дело, нужно считать заслугой устранение неудачных объяснений. Часто в науке существует как бы обман чувств, - кажется, что ты понимаешь, а на самом деле не понимаешь. Случилось это и с фиэико-химическим знанием. Это, конечно, не достоинство, а порок, такой самообман затемняет истину. Поэтому, когда настоящий ученый отбрасывает плохие объяснения явлений, хотя бы эти объяснения были и физико-химические, то это не торжество неовитализма, а лишь строгое отношение к объяснению. Этим вовсе не исключается возможность нахождения верной, твердой и вполне научной дороги, на которую станет дело в будущем, как это не раз случалось и в прошлом. Итак, физиологи сороковых годов считали, что всасывание есть простой осмотический процесс. Но потом физиолог Гейденгайн опроверг это положение. Он представил факты, которые шли в разрез с физико-химическими объяснениями и разрушали их. Борьба со старыми физиологическими понятиями очень поучительна. На ней не бесполезно остановиться.
На всасывание, значит, смотрели раньше как на простой осмотический процесс, имеющий целью уравнять составы вещества по одну и другую сторону кишечных стенок. Всасывание ведет к уравнению состава. Все это - чисто физические представления. В физике, как вам известно, есть подробная теория осмотических явлений, теория Вант-Гоффа. Вант-Гофф рассматривает растворенные твердые тела как газы. Газы стремятся распределиться равномерно. Значит в данном случае, в случае с растворенными веществами, если вы имеете между ними перепонку, вещества будут стремиться распределиться равномерно по обе ее стороны. Но для этого необходимо, чтобы была разница в составе, только тогда и начнется уравнивание. Если же этой разницы в составе нет, тогда передвижение не начнется, в нем не будет нужды.
Обратимся к всасыванию. Все, что ни есть в пищеварительном канале, все переводится в лимфу, в кровь, словом, в соки организма. Для того чтобы здесь можно было говорить об осмотических явлениях, должна, следовательно, быть разница в составе. Но что же оказывается? Уже тот факт, что все, что бы вы ни ввели в пищеварительный канал, переходит затем в соки организма, один этот факт показывает, что переход веществ происходит независимо от состава принятой пищи. И Гейденгайном было доказано в ряде опытов, что в данном случае физико-химическое объяснение не подходит к явлению, не покрывает его вполне.
Опыты эти такие. Возьмем раствор поваренной соли. Как я вам говорил, основная жидкость организма - это 0.9 % -й раствор поваренной соли. Эта жидкость омывает все тело. Если из наших соков удалить все форменные элементы, белки и т. д., то останется одна вода, вот этот 0.9%-й раствор соли. Поэтому такой раствор и назван физиологическим. Значит, казалось бы, так; если вы вольете в пищеварительный канал 0.9%-й раствор поваренной соли, то он не должен переходить за стенки, так как в нем находится поваренная соль в том же отношении, как она имеется и в организме. Вы получите изотонический с соками тела раствор, одинакового химического тона. Однако оказывается, что этот раствор уходит внутрь тела, а не остается в кишках.
Можно пойти дальше. Вы можете взять сыворотку крови, т. е. ту жидкость, которая пропитывает все, весь организм (конечно, кроме морфологических элементов, которые в счет не идут). И вот эта сыворотка, введенная в пищеварительный канал, тоже вся уходит из него в организм. Значит, хотя и нет основного условия для простого осмотического всасывания, а переход, между прочим, совершается.
Этот опыт Гейденгайна мы сейчас сделаем. У нас имеется собака, у которой вскрыта брюшная полость и изолирована часть кишки при переходе из duodenum в jejunum на протяжении 40 см. В этот изолированный отдел мы введем изотонический раствор поваренной соли, т. е, физиологический раствор. Значит, по осмотическим законам, никакого движения этого раствора внутрь организма быть не должно. А вот вы увидите, что этот изотонический раствор будет уходить по ту сторону кишки. Если бы у нас был физический прибор, разделенный перепонкой, то в таких условиях растворы остались бы без движения. Итак, мы вольем в пустую кишку 80 куб. см физиологического раствора, а минут через 15 посмотрим, что из этого выйдет.
Теперь вопрос: что произойдет, если вливать не изотонические растворы? Если бы влить, например, гипертонический или гипотонический раствор, т. е. содержащий больше или меньше соли, чем жидкость организма, то надо было бы по осмотической теории ожидать следующее. Если это 2%-й раствор соли, то надо ждать, что вода из организма пойдет к соли, в кишку, получится увеличение влитого раствора и этим уравняются составы. А если у вас 0.5%-й или 0.3% -й раствор, то надо ожидать, что сперва уйдет из кишки вода, чтобы сделать раствор в кишке более концентрированным. Однако ни того, ни другого не происходит. Все растворы идут одинаково и переходят по ту сторону кишки. Никакого соответствия с тем, что следовало бы ожидать, нет. Но не надо, конечно, понимать так, что здесь получается нарушение осмотического закона. Этого нет. Здесь только усложнение явления; когда вы изучите хорошо все детали, то вы найдете и здесь этот закон.
Гейденгайн сделал добавление к этому опыту. Он попробовал отнять от стенок кишек их жизненные свойства, их живую натуру. Достиг он этого тем, что вводил внутрь пищеварительного канала вещества вроде фтористого натрия, который действует убивающим образом на ткани, отнимая у них жизненные свойства. И тогда в кишке дело происходило точно так, как в стакане у физика. Тогда изотонический раствор не переходил, а гипертонический и гипотонический переходили через кишку. Таким образом, как только сложные свойства живой кишечной перепонки были уничтожены, сразу ясно обнаруживались действия физических законов. Следовательно, живая стенка варьирует в своей деятельности, заслоняя действие физических законов.
Когда Гейденгайн опубликовал свои работы, то неовиталисты зачислили его до известной степени в свой «полк». Они вообразили, что он отстаивает неовиталистическую точку зрения. Для Гейденгайна это было, конечно, оскорблением. Ему это было обидно. И есть очень интересная статья Гейденгайна, где он изложил свое отношение к этой точке зрения: одно дело, указывал он, считать всегда доступными физические объяснения всех фактов, а другое дело - считать все явления никогда научно не объяснимыми. Наконец можно еще считать, что физические объяснения, недоступные сегодня, станут доступными через несколько времени. Понять же и объяснить все - идеал для науки.
Вернемся к нашему первому опыту. Теперь у того же кролика nn. splanchnici перерезаны и взяты на лигатуру. Дыхание устроено искусственное. Покой кишек абсолютный. Раздражаем вагус. Кишки начали двигаться. К сожалению, вам приходится только слушать, а не видеть. Пока nn. splanchnici были целы, нам удавалось только на короткое время вызвать движение, теперь же действие вагуса совершенно отчетливо.
Задерживающего нерва теперь нет, и стоило нам только раз раздражить вагус, как получилось движение, долгое время не прекращающееся, и последующими раздражениями мы только усиливали прежнее движение. Движения эти напоминают возню кучи червей. Здесь заметны большей частью маятникообразные движения. Так как эти движения не прекращаются, то мы покажем действие задерживающего нерва. Мы его достанем и будем раздражать. Раздражаем. Движение все-таки есть. Ясного действия не заметно. Для того чтобы иметь полную задержку, надобно раздражать оба nn. splanchnici. Во всяком случае существует следующий факт. Пока не были перерезаны nn. splanchnici, мы имели полный, устойчивый покой. А теперь, наоборот, мы не можем прекратить движения. Под влиянием же раздражения вагуса происходит усиление движения. Следовательно, в отношении задерживающих нервов мы исходим из того факта, который нами получен.
Факт существования задерживающего нерва у многих исследователей возбудил сомнения. Спор был разрешен тем, что перерезали nn. splanchnici; тогда выступало резкое действие вагуса - двигательного нерва. Здесь аналогия с действием вагуса по отношению к панкреатической железе.
Обратимся к нашему второму опыту. Было введено 80 куб. см физиологического раствора поваренной соли. Посмотрим, что случилось. Прошло 15 минут. Осталось 30 куб. см, 50 куб. см ушло.
По осмотическим законам не должно было бы наблюдаться перехода. Если бы мы отняли у стенки кишки жизненные свойства фтористым натрием, то раствор не ушел бы.
Вольем в ту же кишку кровяной сыворотки. А пока, возвращаясь к изложению, скажу, что эти опыты Гейденгайна остаются вполне в силе и до настоящего времени. Опыты эти доказывают, что процесс всасывания слишком сложен, чтобы быть покрытым известными нам физическими законами. Обстановка действия этих законов так здесь усложнена, что эти физико-химические законы скрыты от нас, и явление носит как бы не согласный с законами физики характер. Законы, безусловно, имеют приложение и тут, но они не видны нам. Это показывает, что там, где мы дело знаем хорошо, там существует полное господство физики и химии, а там, где мы знаем мало, там замечается какое-то противоречие, которое только и обнаруживает наше незнание и ничего больше.
Итак, процесс всасывания - сложный процесс Теперь мы займемся подробностями относительно перехода питательных веществ в глубь тела. Как, по каким путям переходят вещества? Путей здесь несколько, но главных два. Я напомню вам краткую гистологию кишек. Вся слизистая оболочка кишек усеяна выступами, ворсинками. Они имеют сложную конструкцию. Внутри каждой ворсинки имеется центральная полость. По поверхности ворсинки расположены разные элементы. Начиная изнутри, расположен, во-первых, слой цилиндрического эпителия, у которого имеется своеобразное устройство наружной части в виде продольно исчерченной каемки, затем идет тело клетки и ядро. За этим рядом идет соединительнотканный скелет, основа. В этой основе прямо под клетками находятся капилляры кровеносных сосудов. Далее ряд щелей, которые проводят жидкости в глубь центрального канала. В этой же соединительнотканной основе имеются и нервы. Вот в общих чертах состав ворсинки. Центральная часть ворсинки есть начало специальных трубок, так называемых млечных сосудов, о которых была речь раньше, когда говорили о значении желчи. Млечные сосуды - это начало лимфатической системы. Сперва они очень малы, так что их можно видеть только под микроскопом, а дальше они переходят в сосуды такой величины, что мы можем видеть их простым глазом. Для жидкости, проходящей через ворсинки и через всю слизистую оболочку, имеется, значит, возможность пойти в два места: или пойти через слой цилиндрического эпителия и соединительной ткани и проникнуть в млечные сосуды, или же попасть в кровеносную систему, в капилляры, которые в ворсинке лежат под слоем цилиндрических клеток. Для вещества, значит, имеются два пути; или в центральные каналы ворсинки и, следовательно, потом в млечные сосуды, или в капилляры, в кровь.
Теперь вопрос. Что куда подается? Какие переработанные и всосанные вещества попадают в кровь и какие в лимфу? Решить этот вопрос можно таким образом: надо взять или кровь, или содержимое млечного сосуда - млечный сок - и анализировать их состав после того, как вы дали животному в пищу какие-либо вещества. Это чисто химическая задача. Теперь напомню вам, что оттекающая кровь, выносная кровь идет от кишек по специальной ветви, по воротной системе. Воротную систему составляют вены, которые собирают кровь из пищеварительного канала. Они не идут сразу к сердцу, но идут сперва в печень, распадаются там на капилляры, опять собираются в крупные сосуды и затем уже появляются в нижней полой вене. Следовательно, для такого анализа нужно брать кровь из воротной системы. Для того же, чтобы узнать, что попало в млечные сосуды, нужно поступать так. Сосуды эти вначале очень маленькие, с ними трудно оперировать, трудно вставить в них трубку. Поэтому нужно взять сосуды там, где они уже достаточно велики. Млечные сосуды сливаются с системой лимфатических сосудов, которые проходят во всех частях тела. Млечные сосуды являются, таким образом, одной из ветвей лимфатической системы. Слившись с остальными лимфатическими сосудами, млечные сосуды все увеличиваются, и в конце концов огромное количество лимфы и млечного сока собирается и течет в большом сосуде. Это так называемый грудной проток - ductus thoracicus. Здесь же оказывается и всосавшаяся жидкость. Тут вы ее и можете легко достать. Мы можем открыть этот грудной проток и затем нагнетать в него млечную жидкость из брюшной полости по своему желанию.
Следовательно, имеется полная возможность следить за всосавшимися веществами или в крови, или в ductus thoracicus.
А теперь посмотрим результаты опыта. Было влито 90 куб. см кровяной сыворотки в jejunum. Осталось 65 куб. см, следовательно 25 куб. см жидкости вышло из кишки. Вышла жидкость, которая абсолютно такая же по составу, как и жидкость по ту сторону кишки. Почему вышло мало? Это объясняется тем, что чем больше опытов мы ставим на этой кишке, чем дольше идут эти опыты, тем больше кишка удаляется от нормальных условий и тем хуже работает. Кроме того, есть и другие, более глубокие причины, о которых я говорить сейчас не буду.

Популярные статьи сайта из раздела «Медицина и здоровье»

.

Толстая кишка (intestinum crassum) следует за тонкой кишкой. В толстой кишке выделяют слепую кишку, ободочную и прямую. Ободочная кишка в свою очередь представлена восходящей ободочной, поперечной, нисходящей и сигмовидной ободочной кишкой. Функция толстой кишки заключается во всасывании воды, формировании и выведении каловых масс - непереваренных остатков пищевых масс. Длина толстой кишки составляет примерно 160 см. У живых людей она несколько длиннее вследствие большой эластичности тканей. Длина слепой кишки у взрослого человека составляет 4,66 % от всей длины толстой кишки. Длина восходящей ободочной кишки равняется 16,17 %, поперечной ободочной - 34,55 %, нисходящей - 13,72 % и сигмовидной ободочной - 29,59 % от длины толстой кишки взрослого человека (без учета прямой кишки). Диаметр толстой кишки индивидуально варьирует, в среднем он равен 5-8 см и уменьшается в направлении от слепой кишки к прямой кишке. Масса толстой кишки (без содержимого) у взрослого человека составляет примерно 370 г.

Слепая кишка (caecum) является начальной частью толстой кишки, в нее впадает подвздошная кишка. Слепая кишка имеет мешковидную форму, обращенный вниз свободный купол, от которого вниз отходит червеобразный отросток (аппендикс).

Реже слепая кишка конусовидная. Длина слепой кишки равна 4-8 см. Задняя поверхность слепой кишки располагается на подвздошной и большой поясничной мышцах. Передняя поверхность кишки прилежит к передней брюшной стенке. Слепая кишка не имеет брыжейки, но брюшиной покрыта со всех сторон (интраперитонеальное положение). Со слепой кишкой анатомо-топографически связан червеобразный отросток, являющийся важным органом иммунной системы.

Восходящая ободочная кишка (colon ascendens) имеет длину 18-20 см. Положение восходящей ободочной кишки изменчиво. Задняя стенка ее занимает крайнее правое боковое положение на задней стенке брюшной полости. Кишка направляется вертикально вверх, располагаясь вначале кпереди от квадратной мышцы поясницы, далее - кпереди от лежащей забрюшинно правой почки. Возле нижней (висцеральной) поверхности печени восходящая ободочная кишка образует изгиб влево и вперед и переходит в поперечную ободочную кишку. Это правый (печеночный) изгиб ободочной кишки (flexura coli dextra).

Поперечная ободочная кишка (colon transversum) обычно дугообразно провисает вниз. Ее начало находится в области правого подреберья (правый печеночный изгиб) на уровне X реберного хряща, затем кишка идет в косом направлении справа налево сначала вниз, затем вверх в область левого подреберья. Длина поперечной ободочной кишки составляет примерно 50 см (от 25 до 62 см).

Нисходящая ободочная кишка (colon descendens) начинается от левого изгиба ободочной кишки вниз и переходит в сигмовидную ободочную кишку на уровне подвздошного гребня подвздошной кости. Длина нисходящей ободочной кишки составляет в среднем 23 см (от 10 до 30 см). Нисходящая ободочная кишка находится в левом отделе брюшной полости.

Сигмовидная ободочная кишка (colon sigmoideum) начинается на уровне левого подвздошного гребня и переходит в прямую кишку на уровне мыса крестца. Длина кишки составляет от 15 до 67 см (в среднем - 54 см). Сигмовидная ободочная кишка образует 1-2 петли (изгиба), которые прилежат спереди к крылу левой подвздошной кости и частично спускаются в полость таза. Сигмовидная кишка располагается интраперитонеально, имеет брыжейку. Наличие брыжейки обусловливает значительную подвижность сигмовидной кишки.

Характерной внешней особенностью слепой кишки и ободочной является наличие трех мышечных лент - лент ободочной кишки (taeniae coli), шириной 3-6 мм каждая. Свободная, брыжеечная и сальниковая ленты начинаются у основания червеобразного отростка и идут до начала прямой кишки. Ленты образуются вследствие концентрации продольного мышечного слоя в трех участках стенки толстой кишки (в области лент).

  • Брыжеечная лента (taenia mesocolica) соответствует месту прикрепления к толстой кишке (к поперечной ободочной и сигмовидной ободочной) их брыжеек или линии прикрепления кишки (восходящей ободочной и нисходящей) к задней брюшной стенке.
  • Сальниковая лента (taenia omentalis) находится на передней поверхности поперечной ободочной кишки, где к ней прикрепляется большой сальник, ив местах образования сальниковых отростков в других отделах толстой кишки.
  • Свободная лента (taenia libera) располагается на передних (свободных) поверхностях восходящей ободочной кишки и нисходящей ободочной кишки и на нижней поверхности поперечной ободочной кишки в связи с ее провисанием и небольшим скручиванием вокруг продольной оси.

Для стенок толстой кишки характерно наличие сальниковых отростков - пальцеобразных, заполненных жиром выпячиваний, покрытых висцеральной брюшиной. Длина отростков составляет 3-5 см, а число их увеличивается в дистальном направлении. Сальниковые отростки (appendices epiploicae) играют амортизирующую роль (предположительно) при перистальтике (буферное значение), служат жировыми депо организма. На протяжении толстой кишки вследствие меньшей длины мышечных лент по сравнению со стенками соседних участков органа у кишки образуются выпячивания - гаустры ободочной кишки (haustra coli).

Стенка толстой кишки состоит из слизистой оболочки, подслизистой основы, мышечной и серозной (адвентиция) оболочек.

Слизистая оболочка толстой кишки (tunica mucosa) характеризуется значительным количеством поперечных складок полулунной формы. Высота полулунных складок (plicae semilunares) колеблется от нескольких миллиметров до 1-2 см. Складки формируются за счет слизистой оболочки и подслизистой основы на участках между лентами кишки. У прямой кишки, в верхнем ее отделе (ампуле), также имеются поперечные складки (plicae transversae recti). В нижнем отделе (анальный канал) имеется 8-10 продольных складок. Это заднепроходные (анальные) столбы (columnae anales). Между анальными столбами находятся углубления - анальные (заднепроходные) пазухи, или синусы (sinus anales). На стенках этих пазух открываются выводные протоки 5-38 многоклеточных альвеолярно-трубчатых слизистых анальных желез, главные отделы которых располагаются в подслизистой основе анального канала. Линия, на уровне которой соединяются нижние концы анальных столбов и одноименных синусов, называется прямокишечно-заднепроходной линией (hnea anorectalis).

Слизистая оболочка толстой кишки выстлана однослойным призматическим эпителием. Он представлен тремя видами клеток: столбчатыми эпителиоцитами (абсорбционные клетки), бокаловидными экзокриноцитами и эндокриноцитами. На уровне заднепроходного (анального) канала однослойный эпителий замещается многослойным кубическим эпителием. Дистальнее совершается резкий переход от многослойного кубического к многослойному плоскому неороговевающему и постепенно - к ороговевающему эпителию.

Собственная пластинка слизистой оболочки толстой кишки образована рыхлой волокнистой соединительной тканью. В ее толще находится 7,5-12 млн толстокишечных желез (либеркюновых крипт), выполняющих не только секреторную, но и всасывательную функцию. В стенках слепой кишки располагается 4,5 % желез, в стенках ободочной - 90 % и прямой кишки - 5,5 % желез. Распределение толстокишечных желез имеет свои особенности. Плотность их расположения на уровне лент ободочной кишки выше (на 4-12 %), чем между лентами. Размеры желез увеличиваются на вершине полулунных складок, а также в сфинктерных зонах кишки (по сравнению с межсфинктерными зонами). Стенки желез представлены однослойным эпителием, расположенным на базальной мембране. Среди эпителиоцитов желез преобладают бокаловидные и абсорбционные клетки. Постоянно встречаются недифференцированные (стволовые) и непостоянно - эндокринные клетки. Число эндокриноцитов нарастает в направлении от слепой к прямой кишке. Среди них имеются ЕС-клетки (образуют серотонин и мелатонин), D 2 -клетки (секретируют вазоинтестинальный полипептид), А-клетки (выделяют глюкагон).

На протяжении собственной пластинки слизистой оболочки толстой кишки имеются 5,5-6 тыс. одиночных лимфоидных узелков, лимфоидные и тучные клетки, иногда - немногочисленные эозинофилы и нейтрофилы. Одиночные лимфоциты присутствуют также в эпителиальном покрове кишки. В толще собственной пластинки слизистой оболочки находятся кровеносные и лимфатические капилляры и сосуды, немиелинизированные нервные клетки интрамурального нервного сплетения, нервные волокна.

Мышечная пластинка слизистой оболочки представлена пучками гладкомышечных клеток, образующих два слоя. Внутренний слой ориентирован циркулярно, наружный - косо и продольно. От мышечной пластинки в толщу собственной пластинки слизистой оболочки отходят пучки гладко-мышечных клеток длиной 10-30 мкм, диаметром 0,2-2.0 мкм. Тонкие мышечные пучки окружают толстокишечные железы и способствуют выведению их секрета.

Подслизистая основа (tela submucosa) образована рыхлой волокнистой соединительной тканью, в толще которой располагаются лимфоидные узелки, подслизистое нервное (мейсснеровское) сплетение, кровеносные и лимфатические капилляры, слизистые железы (на уровне анального канала).

Мышечная оболочка (tunica muscularis) толстой кишки, толщина которой увеличивается в направлении от слепой к прямой кишке, представляет собой два мышечных слоя - циркулярный (внутренний) сплошной и продольный (наружный) - в виде трех лент у слепой кишки и ободочной. Между этими слоями располагается межмышечное нервное (ауэрбаховское) сплетение, представленное ганглиозными клетками, глиоцитами (шванновскими и сателлитными клетками) и нервными волокнами. Ганглиозные клетки преобладают количественно в зонах, соответствующих лентам ободочной кишки. Внутренняя часть циркулярного слоя является зоной образования перистальтических волн, которые генерируются интерстициальными нервными клетками Кахаля, расположенными в толще подслизистой основы на границе с гладкой мускулатурой толстой кишки.

В некоторых местах, особенно в области перехода одного отдела толстой кишки в другой, имеются слабо выраженные сгущения циркулярно ориентированных гладкомышечных пучков. В этих местах в процессе пищеварения наблюдаются сужения просвета кишки, получившие названиефункциональных толстокишечных сфинктеров, регулирующих прохождение кишечного содержимого. Выделяют слепокишечно-восходящий сфинктер, находящийся на уровне верхнего края подвздошно-слепокишечного клапана. Следующий сфинктер Гирша образует сужение ободочной кишки в области правого ее изгиба (печеночного). На протяжении поперечной ободочной кишки определяется три функциональных сфинктера.Правый сфинктер находится у начальной части поперечной ободочной кишки. Средний поперечно-ободочный сфинктер и левый сфинктер Кеннона располагаются ближе к левому (селезеночному) изгибу ободочной кишки. Непосредственно в области левого изгиба ободочной кишки находитсясфинктер Пайра. При переходе нисходящей ободочной кишки в сигмовидную имеется нисходящесигмовидный сфинктер. В пределах сигмовидной кишки выделяют верхний и нижний сигмовидные сфинктеры. Сигмовидно-прямокишечный сфинктер (О"Бернье) находится на границе этих двух отделов толстой кишки.

Серозная оболочка (tunica serosa) покрывает толстую кишку по-разному. Слепая, поперечная ободочная, сигмовидная и верхняя части прямой кишки покрыты брюшиной со всех сторон. Эти отделы толстой кишки располагаются внутрибрюшинно (интраперитонеально). Восходящая ободочная кишка и нисходящая ободочная, а также средняя часть прямой кишки покрыты брюшиной частично, с трех сторон (мезоперитонеально). Нижний отдел прямой кишки брюшиной не покрыт. Наружной оболочкой этой части кишки является адвентиция. Брюшина (tunica serosa), покрывающая толстую кишку, при переходе на стенки брюшной полости или на соседние органы образует брыжейки, многочисленные складки (так называемые толстокишечные связки). Эти складки (связки) выполняют функции фиксирующего аппарата, они препятствуют смещению и опущению кишки, служат путями дополнительного кровоснабжения кишки по проходящим в них кровеносным сосудам. Количество таких связок индивидуально варьирует. Верхняя подвздошно-слепокишечная складка (plica iliocaecalis superior) представляет продолжение вправо брыжейки тонкой кишки. Она прикрепляется к медиальной поверхности начальной части восходящей ободочной кишки, а ее основание соединяется с брюшиной правого брыжеечного синуса.Брыжеечно-половая связка начинается на нижней поверхности брыжейки конечного отдела подвздошной кишки, затем в виде треугольного образования спускается к правому краю стенки входа в малый таз. У женщин связка переходит на поддерживающую связку яичника, у мужчин она направляется к глубокому кольцу пахового канала, где постепенно переходит в пристеночную (париетальную) брюшину. Левая диафрагмально-ободочная связка (lig. phrenocolicum sinistrum) расположена между реберной частью диафрагмы и левым изгибом ободочной кишки. Внизу связка распространяется на область селезеночного угла, образованного поперечной ободочной кишкой и нисходящей ободочной, соединяя их друг с другом. Обычно эта связка сращена с большим сальником. Остальные связки непостоянные. Они чаще фиксируют области перехода одного отдела толстой кишки в другой.

Вам также будет интересно:

Хлеб ржаной половина покупать во сне
Хлеб во сне является символом пищи для тела и ума. Видеть свежеиспеченный каравай – к...
Суп-харчо - классический рецепт с тклапи, рисом и тертыми орехами
Ароматный, сытный и наваристый суп харчо хорош для зимних обедов, когда за окном мороз и...
Очень вкусные рецепты: с томатным соусом, с рисом, в сливочном соусе и как в детском саду
Существует огромное количество вариантов приготовления тефтелей — и в этом нет ничего...
Сонник: к чему снятся овощи
Сны бывают разные: тревожные и счастливые, страшные и вещие, красивые и такие, что не...
Сонник толкование снов дверь
Двери во сне - В общественном месте открытые двери - сновидение означает, что вам следует...