Сайт о холестерине. Болезни. Атеросклероз. Ожирение. Препараты. Питание

Очень вкусные рецепты: с томатным соусом, с рисом, в сливочном соусе и как в детском саду

Сонник: к чему снятся овощи

Сонник толкование снов дверь

Планеты на асценденте и мс Марс на асценденте

Формы внутривидовой изоляции

Презентация «Такие разные птицы

Территория фрг.  Германия. Территория Германии: площадь и географическое положение

Презентация к уроку физики Электрические явления в природе презентация к уроку физики (9 класс) на тему Просмотр содержимого презентации «Природные электрические явления»

Салат из говядины отварной

Как приготовить бисквитный торт с фруктами Бисквит с кусочками фруктов

Как испечь немецкий штрудель?

Запеканка в мультиварке творожная с манкой

Замы Министра обороны РФ: имена, звания, достижения Кто руководит и управляет вс рф

Рецепт с курагой Овсяные хлопья с изюмом рецепт

Как приготовить шницель из курицы на сковороде

Дыхательный центр. Регуляция дыхания

Регуляция дыхательных движений

Нервная регуляция

Дыхательный центр (центр вдоха и выдоха) находится в продолговатом отделе головного мозга. Работа Дыхательного центра зависит от болевых и температурных воздействий, а также артериального давления, лекарственных средств и других факторов.

Кора больших полушарий головного мозга позволяет произвольно задерживать, изменять ритм и глубину дыхания.

Гуморальная регуляция

При увеличении в крови концентрации углекислого газа (СО г) возбудимость дыхательного центра повышается - дыхание учащается. При уменьшении концентрации С0 2 возбудимость дыхательного центра снижается.

Внешнее дыхание - одна из важнейших функций организма. Остановка дыхания приводит верную смерть уже через 3-5 мин. Количество кислорода в организме незначительна, поэтому важно, чтобы он постоянно поступал через систему внешнего дыхания. Этим объясняется формирование в процессе эволюции такого механизма регуляции, который бы обеспечил высокую надежность дыхания. В основе регуляциГ дыхания лежит поддержка константного уровня-таких показателей организма, как Рсо8, Ро? и рН. Основным принципом регуляции е саморегуляция, при которой отклонение этих параметров от нормального уровня немедленно вызывает ряд процессов, направленных на их восстановление. В системе регуляции дыхания можно выделить внутренние и внешние звенья саморегуляции. Внутренние звенья связаны с состоянием крови (буферные свойства, содержание гемоглобина) и сердечно-сосудистой системы, внешние - с механизмами внешнего дыхания. Изменяемыми параметрами системы регуляции внешнего дыхания является глубина и частота дыхательных движений. Основным регулируемым объектом являются дыхательные мышцы, которые относятся к скелетных мышц. Кроме них, к объекту регуляции дыхания должны быть зачислены гладкие мышцы глотки, трахеи и бронхов, которые влияют на состояние дыхательных путей. Транспорт газов кровью и газообмен в тканях осуществляет сердечно-сосудистая система, о регуляции функций которой речь пойдет в соответствующих разделах. Дыхание регулируется главным образом рефлекторным путем, который включает в себя 3 элемента: 1) рецепторы, воспринимающие информацию и афферентные пути, которые передают Ее нервным центрам, 2) нервные центры, 3) эффекторы - пути передачи команд от центров и собственно исполнительные элементы.

Непроизвольную регуляцию дыхания осуществляет дыхательный центр, находящийся в продолговатом мозге (одном из отделов заднего мозга) . Вентральная (нижняя) часть дыхательного центра ответственна за стимуляцию вдоха; ее называют центром вдоха (инспнра-торным центром) . Стимуляция этого центра увеличивает частоту и глубину вдоха. Дорсальная (верхняя) часть и обе латеральные (боковые) тормозят вдох и стимулируют выдох; они носят собирательное название центра выдоха (экспираторного центра) . Дыхательный центр связан с межреберными мышцами межреберными нервами, а с диафрагмой - диафрагмальными. Бронхиальное дерево (совокупность бронхов и бронхиол) иннервируется блуждающим нервом. Ритмично повторяющиеся нервные импульсы, направляющиеся к диафрагме и межреберным мышцам обеспечивают осуществление вентиляционных движений. Расширение легких при вдохе стимулирует находящиеся в бронхиальном дереве рецепторы растяжения (проприоцепторы) и они посылают через блуждающий нерв все больше и больше импульсов в экспираторный центр. Это на время подавляет инспираторный центр и вдох. Наружные межреберные мышцы теперь расслабляются, эластично сокращается растянутая легочная ткань - происходит выдох. После выдоха рецепторы растяжения в бронхиальном дереве более уже не подвергаются стимуляции. Поэтому экспираторный центр отключается и вдох может начаться снова. Весь этот цикл непрерывно и ритмично повторяется на протяжении всей жизни организма. Форсированное дыхание осуществляется при участии внутренних межреберных мышц. Основной ритм дыхания поддерживается дыхательным центром продолговатого мозга, даже если все входящие в него нервы перерезаны. Однако в обычных условиях на этот основной ритм накладываются различные влияния. Главным фактором, регулирующим частоту дыхания, служит не концентрация кислорода в крови, а концентрация С02. Когда уровень С02 повышается (например, при физической нагрузке) , имеющиеся в кровеносной системе хеморецепторы каротидных и аортальных телец посылают нервные импульсы в инспираторный центр. В самом продолговатом мозге также имеются хеморецепторы. От инспираторного центра через диафрагмальные и межреберные нервы поступают импульсы в диафрагму и наружные межреберные мышцы, что ведет к их более частому сокращению, а следовательно, к увеличению частоты дыхания. Накапливающийся в организме С02 может причинить большой вред организму. При соединении С02 с водой образуется кислота, способная вызвать денатурацию ферментов и других белков. Поэтому в процессе эволюции у организмов выработалась очень быстрая реакция на любое повышение концентрации С02. Если концентрация С02 в воздухе увеличивается на 0,25%, то легочная вентиляция удваивается. Чтобы вызвать такой же результат, концентрация кислорода в воздухе должна снизиться с 20% до 5%. Концентрация кислорода тоже влияет на дыхание, однако в обычных условиях кислорода всегда бывает достаточно, и потому его влияние относительно невелико. Хеморецепторы, реагирующие на концентрацию кислорода, располагаются в продолговатом мозге, в каротидных и аортальных тельцах, так же, как и рецепторы С02. В известных пределах частота и глубина дыхания могут регулироваться произвольно, о чем свидетельствует, например, наша способность «затаить дыхание» . К произвольной регуляции дыхания мы прибегаем при форсированном дыхании, при разговоре, пении, чихании и кашле.

По современным представлениям дыхательный центр - это совокупность нейронов, обеспечивающих смену процессов вдоха и выдоха и адаптацию системы к потребностям организма. Выделяют несколько уровней регуляции:

1) спинальный;

2) бульбарный;

3) супрапонтиальный;

4) корковый.

Спинальный уровень представлен мотонейронами передних рогов спинного мозга, аксоны которых иннервируют дыхательные мышцы. Этот компонент не имеет самостоятельного значения, так как подчиняется импульсам из вышележащих отделов.

Нейроны ретикулярной формации продолговатого мозга и моста образуют бульбарный уровень . В продолговатом мозге выделяют следующие виды нервных клеток:

1) ранние инспираторные (возбуждаются за 0,1-0,2 с до начала активного вдоха);

2) полные инспираторные (активируются постепенно и посылают импульсы всю фазу вдоха);

3) поздние инспираторные (начинают передавать возбуждение по мере угасания действия ранних);

4) постинспираторные (возбуждаются после торможения инспираторных);

5) экспираторные (обеспечивают начало активного выдоха);

6) преинпираторные (начинают генерировать нервный импульс перед вдохом).

Аксоны этих нервных клеток могут направляться к мотонейронам спинного мозга (бульбарные волокна) или входить в состав дорсальных и вентральных ядер (протобульбарные волокна).

Нейроны продолговатого мозга, входящие в состав дыхательного центра, обладают двумя особенностями:

1) имеют реципрокные отношения;

2) могут самопроизвольно генерировать нервные импульсы.

Пневмотоксический центр образован нервными клетками моста. Они способны регулировать активность нижележащих нейронов и приводят к смене процессов вдоха и выдоха. При нарушении целостности ЦНС в области ствола мозга понижается частота дыхания и увеличивается продолжительность фазы вдоха.

Супрапонтиальный уровень представлен структурами мозжечка и среднего мозга, которые обеспечивают регуляцию двигательной активности и вегетативной функции.

Корковый компонент состоит из нейронов коры больших полушарий, влияющих на частоту и глубину дыхания. В основном они оказывают положительное влияние, особенно на моторные и орбитальные зоны. Кроме того, участие коры больших полушарий говорит о возможности самопроизвольно изменять частоту и глубину дыхания.

Таким образом, в регуляции дыхательного процесса принимают различные структуры коры больших полушарий, но ведущую роль играет бульбарный отдел.

2. Гуморальная регуляция нейронов дыхательного центра

Впервые гуморальные механизмы регуляции были описаны в опыте Г. Фредерика в 1860 г., а затем изучались отдельными учеными, в том числе И. П. Павловым и И. М. Сеченовым.

Г. Фредерик провел опыт перекрестного кровообращения, в котором соединил сонные артерии и яремные вены двух собак. В результате голова собаки № 1 получала кровь от туловища животного № 2, и наоборот. При пережатии трахеи у собаки № 1 произошло накопление углекислого газа, который поступил в туловище животного № 2 и вызвал у него повышение частоты и глубины дыхания - гиперпноэ. Такая кровь поступила в голову собаки под № 1 и вызвала понижение активности дыхательного центра вплоть до остановки дыхания гипопноэ и апопноэ. Опыт доказывает, что газовый состав крови напрямую влияет на интенсивность дыхания.

Возбуждающее действие на нейроны дыхательного центра оказывают:

1) понижение концентрации кислорода (гипоксемия);

2) повышение содержания углекислого газа (гиперкапния);

3) повышение уровня протонов водорода (ацидоз).

Тормозное влияние возникает в результате:

1) повышения концентрации кислорода (гипероксемии);

2) понижения содержания углекислого газа (гипокапнии);

3) уменьшения уровня протонов водорода (алкалоза).

В настоящее время учеными выделено пять путей влияния газового состава крови на активность дыхательного центра:

1) местное;

2) гуморальное;

3) через периферические хеморецепторы;

4) через центральные хеморецепторы;

5) через хемочувствительные нейроны коры больших полушарий.

Местное действие возникает в результате накопления в крови продуктов обмена веществ, в основном протонов водорода. Это приводит к активации работы нейронов.

Гуморальное влияние появляется при увеличении работы скелетных мышц и внутренних органов. В результате выделяются углекислый газ и протоны водорода, которые стоком крови поступают к нейронам дыхательного центра и повышают их активность.

Периферические хеморецепторы - это нервные окончания с рефлексогенных зон сердечно-сосудистой системы (каротидные синусы, дуга аорты и т. д.). Они реагируют на недостаток кислорода. В ответ начинают посылаться импульсы в ЦНС, приводящие к увеличению активности нервных клеток (рефлекс Бейнбриджа).

В состав ретикулярной формации входят центральные хеморецепторы , которые обладают повышенной чувствительностью к накоплению углекислого газа и протонов водорода. Возбуждение распространяется на все зоны ретикулярной формации, в том числе и на нейроны дыхательного центра.

Нервные клетки коры больших полушарий также реагируют на изменение газового состава крови.

Таким образом, гуморальное звено играет важную роль в регуляции работы нейронов дыхательного центра.

3. Нервная регуляция активности нейронов дыхательного центра

Нервная регуляция осуществляется в основном рефлекторными путями. Выделяют две группы влияний - эпизодические и постоянные.

К постоянным относятся три вида:

1) от периферических хеморецепторов сердечно-сосудистой системы (рефлекс Гейманса);

2) от проприорецепторов дыхательных мышц;

3) от нервных окончаний растяжений легочной ткани.

В процессе дыхания мышцы сокращаются и расслабляются. Импульсы от проприорецепторов поступают в ЦНС одновременно к двигательным центрам и нейронам дыхательного центра. Происходит регуляция работы мышц. При возникновении каких-либо препятствий дыхания инспираторные мышцы начинают еще больше сокращаться. В результате устанавливается зависимость между работой скелетных мышц и потребностями организма в кислороде.

Рефлекторные влияния от рецепторов растяжения легких были впервые обнаружены в 1868 г. Э. Герингом и И. Брейером. Они обнаружили, что нервные окончания, расположенные в гладкомышечных клетках, обеспечивают три вида рефлексов:

1) инспираторно-тормозные;

2) экспираторно-облегчающие;

3) парадоксальный эффект Хеда.

При нормальном дыхании возникает инспираторно-тормозные эффекты. Во время вдоха легкие растягиваются, и импульсы от рецепторов по волокнам блуждающих нервов поступают в дыхательный центр. Здесь происходит торможение инспираторных нейронов, что приводит к прекращению активного вдоха и наступлению пассивного выдоха. Значение этого процесса заключается в обеспечении начала выдоха. При перегрузке блуждающих нервов смена вдоха и выдоха сохраняется.

Экспираторно-облегчающий рефлекс можно обнаружить только в ходе эксперимента. Если растягивать легочную ткань в момент выдоха, то наступление следующего вдоха задерживается.

Парадоксальный эффект Хеда можно осуществить в ходе опыта. При максимальном растяжении легких в момент вдоха наблюдается дополнительный вдох или вздох.

К эпизодическим рефлекторным влияниям относятся:

1) импульсы от ирритарных рецепторов легких;

2) влияния с юкстаальвеолярных рецепторов;

3) влияния со слизистой оболочки дыхательных путей;

4) влияния от рецепторов кожи.

Ирритарные рецепторы расположены в эндотелиальном и субэндотелиальном слое дыхательных путей. Они выполняют одновременно функции механорецепторов и хеморецепторов. Механорецепторы обладают высоким порогом раздражения и возбуждаются при значительным спадании легких. Подобные спадания наступают в норме 2-3 раза в час. При уменьшении объема легочной ткани рецепторы посылают импульсы к нейронам дыхательного центра, что приводит к дополнительному вдоху. Хеморецепторы реагируют на появление частиц пыли в слизи. При активации ирритарных рецепторов возникают чувство першения в горле и кашель.

Юкстаальвеолярные рецепторы находятся в интерстиции. Они реагируют на появление химических веществ - серотонина, гистамина, никотина, а также на изменение жидкости. Это приводит к особому виду одышки при отеке (при пневмонии).

При сильном раздражении слизистой оболочки дыхательных путей происходит остановка дыхания, а при умеренном появляются защитные рефлексы. Например, при раздражении рецепторов носовой полости возникает чиханье, при активации нервных окончаний нижних дыхательных путей - кашель.

На частоту дыхания оказывают влияние импульсы, поступающие от температурных рецепторов. Так, например, при погружении в холодную воду наступает задержка дыхания.

При активации ноцецепторов сначала наблюдается остановка дыхания, а затем происходит постепенное учащение.

Во время раздражения нервных окончаний, заложенных в тканях внутренних органов, происходит уменьшение дыхательных движений.

При повышении давления наблюдается резкое понижение частоты и глубины дыхания, что влечет уменьшение присасывающей способности грудной клетки и восстановление величины кровяного давления, и наоборот.

Таким образом, рефлекторные влияния, оказываемые на дыхательный центр, поддерживают на постоянном уровне частоту и глубину дыхания.

Дыхательный центр представляет собой парное скопление нейронов (клеток) головного мозга, объединенных общей функцией. За счет его работы дыхательные мышцы сокращаются и расслабляются в определенной последовательности, а сам процесс дыхания подстраивается под окружающую среду и состояние организма.

Данная анатомическая структура находится в мосте и продолговатом мозге. Помимо этого анатомического отдела, здесь же располагаются и такие важные центры, как жевания, глотания, слюноотделения и другие. Повреждение продолговатого мозга человека чаще всего приводит к смерти от паралича дыхательных мышц, разобщения процесса дыхания, и, как следствие, нарастания дыхательной недостаточности.

В дыхательном центре существуют несколько значимых отделов. Инспираторный отдел отвечает за регуляцию вдоха, экспираторный — выдоха. Повреждение какого-либо одного отдела блокирует эту функцию на той стороне, где находится очаг поражения. Экспираторный отдел располагается в вентральном ядре продолговатого мозга, в то время как инспираторный — в дорсальном ядре. Процесс координации вдохов и выдохов контролируется пневмотаксическим центром, который находится в области варолиева моста. Данный отдел обладает функцией автоматизма, то есть, самостоятельно генерирует нервный импульс. Возбуждение этого центра осуществляется вдохом, за которым должен следовать своевременный выдох. В мосте располагается также отдел, регулирующий тонус дыхательного центра.

Работа дыхательного центра

Функция дыхательного центра контролируется совокупностью факторов. Рассмотрим их компоненты:

  1. Автоматизм нейронов центра, которые самостоятельно вырабатывают импульсы для совершения дыхательных движений. Этот процесс контролируется газовым составом крови, ее кислотно-щелочным состоянием, метаболическими особенностями организма и физической нагрузкой, а также условиями окружающей среды.
  2. Углекислый газ вызывает стимуляцию дыхательного центра. При недостатке кислорода в окружающем воздухе его поступает со вдохом мало, поэтому наступает компенсация: увеличение частоты и глубины дыхания.
  3. Газовый состав крови напрямую влияет на работу дыхательного центра. При недостатке кислорода (гипоксии) кислотно-основное состояние крови смещается в сторону кислого (ацидоз). Ткани не справляются со своими функциональными обязанностями, так как для их деятельности не хватает кислорода. В связи с этим увеличивается частота дыхания, но оно поверхностное, т.е. недостаточно эффективное.
  4. В организме человека существует несколько рефлексогенных зон, стимуляция которых изменяет ритм дыхания. Резкое раздражение рецепторов тепла или холода кожи может привести к рефлекторной остановке дыхания. При чихании, глотании дыхательная деятельность кратковременно останавливается. Сосудистая синокаротидная зона, как и дыхательный центр, чувствительна к изменению газового состава среды.

Нормальный дыхательный цикл

Исходя из полученной информации, дыхательный цикл можно изобразить следующим образом:

Активация инспираторных нейронов за счет повышения концентрации углекислого газа — нервный импульс направляется из вентральных ядер по нервным волокнам в моторецепторы диафрагмальных и межреберных нервов — увеличение объема легких и грудной клетки — вдох — раздражение рецепторов растяжения альвеол — направление нервного импульса к экспираторному отделу дыхательного центра — раздражение отдела — выдох.

Данная схема получила название дыхательного контура. Процесс ритмичности этих циклов контролируется пневмотаксическим центром.

ДЫХАТЕЛЬНЫЙ ЦЕНТР - нервное образование в продолговатом мозге, обеспечивающее координированную ритмическую деятельность дыхательных мышц и приспособление дыхания к изменяющимся условиям окружающей и внутренней среды организма.

Строение дыхательного центра описано Н. А. Миславским в 1885 г. Д. ц. включает медиальный отдел ретикулярной формации, находящийся по обе стороны шва на уровне выхода подъязычного нерва; каудально граничит с оливами и пирамидами, латерально с веревчатыми телами. Д. ц. состоит из инспираторного отдела, раздражение к-рого вызывает вдох, и экспираторного, раздражение к-рого сопровождается выдохом. Установлено, что ритмическое дыхание (смена вдоха выдохом и выдоха вдохом) сохраняется при наличии нижних 2/3 продолговатого мозга даже после перерезки блуждающих нервов. Д. ц. обладает повышенной чувствительностью к изменениям газового состава крови.

В опытах с перфузией TV желудочка р-рами, богатыми CO 2 , и при аппликации этих р-ров на стенки желудочка найдены хеморецептивные зоны с типичными нейронами - хеморецепторами (см.), которые реагируют на изменения концентрации водородных ионов и напряжения CO2 в ликворе. В отличие от артериальных, центральные хеморецепторы характеризуются медленным и длительным возбуждением и повышенной чувствительностью к наркотикам.

Основная функция Д. ц.- организация ритмического дыхания. Оно регулируется верхними отделами ствола и корой мозга, в которых происходит синтез информации о газовом составе крови и тканей организма и формируется импульсация возбуждения в Д. ц. о степени расширения легких для забора объема воздуха, соответствующего потребности организма в данный момент. Эфферентное возбуждение из Д. п. через дыхательные мотонейроны спинного мозга по диафрагмальному и межреберным нервам передается к соответствующим исполнительным органам-диафрагме и межреберным мышцам, мышцам бронхов, трахеи, гортани. Произвольная регуляция дыхания осуществляется с помощью коллатералей аксонов пирамидного тракта, проводящих возбуждение от коры головного мозга непосредственно к продолговатому мозгу. Перерезка ствола на разных уровнях приводит к резким нарушениям дыхания; животные производят быстрые судорожные «вздохи» максимальной силы без плавного перехода вдоха в выдох и с пассивным выдохом. Такое дыхание не обеспечивает нормальной вентиляции легких, и животное погибает от дыхательного ацидоза (см.). В дорсолатеральной области ретикулярной формации перешейка моста находится пневмотаксический центр, в состав к-рого входят богатое катехоламинами синее пятно (locus coeruleus), клетки мезэнцефалического ядра тройничного нерва, клиновидное и парабрахиальные ядра. Он способен изменять активность Д. ц., обеспечивать плавное ритмическое дыхание. Пневмотаксический центр и система блуждающих нервов взаимозаменяемы; их изолированное выключение не нарушает ритмики дыхания, одновременное - сопровождается апноэтическим дыханием, к-рое характеризуется длительной задержкой на высоте вдоха.

С помощью микроэлектродной техники у животных в области Д. ц. обнаружены «дыхательные» нейроны, дающие залпы импульсов синхронно с определенной фазой дыхательного цикла. «Дыхательные» нейроны расположены в латеральной области ретикулярной формации продолговатого мозга. В медиальной области они не обнаружены. Большинство авторов считает, что «дыхательные» нейроны не образуют морфологически оформленных групп, а рассеяны по ретикулярной формации. Они составляют 10-15% всех активных клеток этой области. В каждой группе нейронов (инспираторной и экспираторной) в зависимости от совпадения залпов импульсов с фазами дыхания обнаружено несколько подгрупп. Тип активности их постоянен и не меняется под влиянием внешних воздействий (ваготомии, перерезки спинного мозга, дыхательной деафферентации). При внутриклеточном отведении потенциалов от «дыхательного» нейрона установлен большой разброс в величине мембранного потенциала (25-70 мв). Вначале регистрируются местные возбуждающие постсинаптические потенциалы, затем, по достижении критического уровня деполяризации (10 мв), возникает потенциал действия (22-55 мв). Характерной чертой этих нейронов является постепенный сдвиг мембранного потенциала в сторону деполяризации. В результате по мере развития залпа возбудимость нейрона снижается и для возникновения потенциала действия требуется большее возбуждение, чем в начале залпа. Это самоограничивающий частоту и длительность разряда механизм.

Природа ритмической активности Д. ц. неизвестна. Основные гипотезы: 1) инспираторные нейроны спонтанно непрерывно активны и периодически тормозятся экспираторными нейронами; последние возбуждаются импульсацией, поступающей по блуждающим нервам или от пневмотаксического центра; 2) обе группы нейронов обладают спонтанной залповой активностью; наличие реципрокных взаимоотношений между ними обусловливает возникновение ритмики; 3) «дыхательные» нейроны не обладают спонтанной активностью, возбуждаются от активности других облегчающих структур мозга; обе группы нейронов находятся в реципрокных отношениях и связаны тормозными связями; каждая из них имеет механизмы, ограничивающие собственную активность; 4) существует несколько подтипов «дыхательных» нейронов, каждый из них составляет функциональную единицу; взаимодействие между единицами обеспечивает ритмическое дыхание, условием его возникновения является определенный уровень CO 2 и активирующие влияния ретикулярной формации; реципрокность не обязательна.

Д. ц. рассматривают как составную часть функциональной системы (см. Функциональные системы), регулирующей взаимосвязанные гуморальные показатели крови и тканей организма: pH, pCO 2 и pO 2 .

С помощью микроионо- и полярографии показано, что в условиях гипоксии (см.) или гиперкапнии (см.) происходит смещение всех показателей и ни один из них не возвращается к исходным цифрам, т. е. нет изолированного процесса саморегуляции каждого показателя в отдельности. Очевидно, конечным результатом деятельности дыхательного центра является не сохранение исходной величины каждого показателя, а обеспечение баланса между значением отдельных показателей.

Патология Д. ц. и патол, состояния, связанные с нарушениями функции Д. ц.,- см. Дыхание , Дыхательная недостаточность .

Библиография: Белова Т. И. К вопросу о роли «пневмотаксического центра» в функциональной системе дыхания (морфологическое исследование), в кн.: Эволюция функций в онтогенезе, под ред. E. М. Креп-са, с. 128, Л., 1972, библиогр.; M и с л а в-с к и й Н. А. О дыхательном центре, Казань, 1885; Сергиевский М. В. и др. Дыхательный центр, М., 1975; Физиология дыхания, под ред. Л. Л. Шика и др., с. 165, Л., 1973; Ю м а т о в Е. А. Системные принципы регуляции дыхания, в кн.: Принципы системной организации функций, под ред. П. К. Анохина, с. 233, М., 1973, библиогр.

Е. Л. Голубева.

Введение

Дыхание - это неотъемлемый признак жизни. Мы дышим постоянно с момента рождения и до самой смерти, дышим днем и ночью во время глубокого сна, в состоянии здоровья и болезни.

В организме человека и животных запасы кислорода ограничены, поэтому организм нуждается в непрерывном поступлении кислорода из окружающей среды. Также постоянно и непрерывно из организма должен удаляться углекислый газ, который всегда образуется в процессе обмена веществ и в больших количествах является токсичным соединением.

Дыхание - сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови и происходит биологическое окисление в тканях. В этом заключается его сущность.

Нормальное функционирование организма человека возможно только при условии пополнения энергией, которая непрерывно расходуется. Организм получает энергию за счет окисления органических веществ - белков, жиров, углеводов. При этом освобождается скрытая химическая энергия, которая является источником жизнедеятельности, развития и роста организма. Таким образом, значение дыхания состоит в поддержании в организме оптимального уровня окислительно-восстановительных процессов.

Состав выдыхаемого воздуха весьма непостоянен и зависит от интенсивности обмена веществ, а также от частоты и глубины дыхания. Стоит задержать дыхание или сделать несколько глубоких дыхательных движений, как состав выдыхаемого воздуха изменится.

Важную роль в жизнедеятельности человека играет регуляция дыхания.

Регуляция деятельности дыхательного центра, расположенного в продолговатом мозге, осуществляется гуморально, за счет рефлекторных воздействий и нервных импульсов, поступающих из отделов головного мозга.

В курсовой работе рассмотрены вопросы регуляции деятельности дыхательного центра и механизмы адаптации дыхания к мышечной деятельности.

Дыхательный центр

Дыхательным центром называют совокупность нервных клеток, расположенных в разных отделах центральной нервной системы, обеспечивающих координированную ритмическую деятельность дыхательных мышц и приспособление дыхания к изменяющимся условиям внешней и внутренней среды организма.

Некоторые группы нервных клеток являются необходимыми для ритмической деятельности дыхательных мышц. Они расположены в ретикулярной формации продолговатого мозга, составляя дыхательный центр в узком смысле слова. Нарушение функции этих клеток приводит к прекращению дыхания вследствие паралича дыхательных мышц.

Дыхательный центр продолговатого мозга посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательную мускулатуру.

Мотонейроны, отростки которых образуют диафрагмальные нервы, иннервирующие диафрагму, находятся в передних рогах III…IV шейных сегментов. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах грудного отдела спинного мозга. Отсюда понятно, что при перерезке спинного мозга между грудными и шейными сегментами прекращается реберное дыхание, а диафрагмальное дыхание сохраняется, так как двигательное ядро диафрагмального нерва, находящееся выше места перерезки, сохраняет связь с дыхательным центром и диафрагмой. При перерезке спинного мозга под продолговатым дыхание полностью прекращается и наступает гибель организма от удушения. Однако при такой перерезке мозга продолжаются в течение некоторого времени сокращения вспомогательных дыхательных мышц ноздрей и гортани, которые иннервируются нервами, выходящими непосредственно из продолговатого мозга.

Уже в древности было известно, что повреждение спинного мозга ниже продолговатого приводит к смерти. В 1812 г. Легаллуа путем перерезки мозга у птиц, а в 1842 г. Флуранс путем раздражения и разрушения участков продолговатого мозга дали объяснение этого факта и привели экспериментальные доказательства местонахождения дыхательного центра в продолговатом мозгу. Флуранс представлял дыхательный центр как ограниченную зону размером с булавочную головку и дал ему название «жизненного узла».

Н. А. Миславский в 1885 г., применяя методику точечного раздражения и разрушения отдельных участков продолговатого мозга, установил, что дыхательный центр расположен в ретикулярной формации продолговатого мозга, в области дна IV желудочка, и является парным, причем каждая его половина иннервирует дыхательные мышцы той же половины тела. Кроме того, Н. А. Миславский показал, что дыхательный центр представляет собой сложное образование, состоящее из центра вдоха (инспираторный центр) и центра выдоха (экспираторный центр). Он пришел к заключению, что определенный участок продолговатого мозга является центром, регулирующим и координирующим дыхательные движения.

Выводы Н.А. Миславского подтверждены многочисленными экспериментальными исследованиями, в частности проведенными в последнее время с помощью микроэлектродной техники. При записи электрических потенциалов отдельных нейронов дыхательного центра обнаружено, что в нем существуют нейроны, разряды которых резко учащаются в фазе вдоха, и другие нейроны, разряды которых учащаются в фазе выдоха. Раздражение отдельных точек продолговатого мозга электрическим током, проводимое с помощью микроэлектродов, также выявило наличие нейронов, стимуляция которых вызывает акт вдоха, и других нейронов, стимулирующих акт выдоха.

Баумгартен в 1956 г. показал, что нейроны дыхательного центра распределены в ретикулярной формации продолговатого мозга, вблизи от striae acusticae (рисунок 1). Точной границы между экспираторными и инспираторными нейронами не существует, но имеются участки, где преобладают одни из них: инспираторные - в каудальном отделе одиночного пучка, (tractus solitarius), экспираторные - в вентральном ядре (nucleus ambiguus).

Рисунок 1 - Локализация дыхательных центров На рисунке - нижняя часть ствола мозга (вид сзади). ПН - центр пневмотаксиса; ИНСП - инспираторный центр; ЭКСП - экспираторный центр. Центры являются двусторонними, но для упрощения схемы на каждой из сторон изображен только один из центров. Перерезка выше линии 1 на дыхании не отражается. Перерезка по линии 2 отделяет центр пневмотаксиса. Перерезка ниже линии 3 вызывает прекращение дыхания

Лумсден и другие исследователи в опытах на теплокровных животных нашли, что дыхательный центр имеет более сложную структуру, чем предполагалось ранее. В верхней части варолиева моста находится так называемый пневмотаксический центр, который контролирует деятельность расположенных ниже дыхательных центров вдоха и выдоха и обеспечивает нормальные дыхательные движения. Полагают, что значение пневмотаксического центра состоит в том, что во время вдоха он вызывает возбуждение центра выдоха и, таким образом, обеспечивает ритмическое чередование вдоха и выдоха.

Деятельность всей совокупности нейронов, образующих дыхательный центр, необходима для сохранения нормального дыхания. Однако в процессах регуляции дыхания принимают участие также вышележащие отделы центральной нервной системы, которые обеспечивают тонкие приспособительные изменения дыхания при различных видах деятельности организма. Важная роль в регуляции дыхания принадлежит большим полушариям головного мозга и их коре, благодаря которой осуществляется приспособление дыхательных движений при разговоре, пении, спорте и трудовой деятельности.

Регуляция деятельности дыхательного центра осуществляется гуморально, за счет рефлекторных воздействий и нервных импульсов, поступающих из вышележащих отделов головного мозга.

По И.П. Павлову, деятельность дыхательного центра зависит от химических свойств крови и от рефлекторных влияний, в первую очередь с легочной ткани.

Нейронам дыхательного центра свойственна ритмическая автоматия. Это видно из того, что даже после полного выключения приходящих к дыхательному центру афферентных импульсов в его нейронах возникают ритмические колебания биопотенциалов, которые можно зарегистрировать электроизмерительным прибором. Впервые это явление обнаружил еще в 1882 г. И. М. Сеченов. Много позднее Эдриан и Бутендайк посредством осциллографа с усилителем зарегистрировали ритмические колебания электрических потенциалов в изолированном стволе мозга золотой рыбки. Б. Д. Кравчинский наблюдал подобные ритмические колебания электрических потенциалов, происходящие в ритме дыхания, в изолированном продолговатом мозге лягушки.

Автоматическое возбуждение дыхательного центра обусловлено протекающими в нем самом процессами обмена веществ и его высокой чувствительностью к углекислоте. Автоматия центра регулируется нервными импульсами, приходящими от рецепторов легких, сосудистых рефлексогенных зон, дыхательных и скелетных мышц, а также импульсами из вышележащих отделов центральной нервной системы и, наконец, гуморальными влияниями.

Вам также будет интересно:

Вертута из дрожжевого теста с брынзой
Ветрута - традиционный молдавский пирог из вытяжного теста. Именно благодаря ему выпечка...
Cонник косить, к чему снится косить во сне видеть
Домашний сонник Коса, косить к чему снится Если сновидцу снится коса или ему приходится...
Сонник: к чему снится коса
приснилась коса (косить)Увиденная во сне коса, сигнализирует о возможном нарушении ваших...
Хлеб ржаной половина покупать во сне
Хлеб во сне является символом пищи для тела и ума. Видеть свежеиспеченный каравай – к...
Суп-харчо - классический рецепт с тклапи, рисом и тертыми орехами
Ароматный, сытный и наваристый суп харчо хорош для зимних обедов, когда за окном мороз и...