Сайт о холестерине. Болезни. Атеросклероз. Ожирение. Препараты. Питание

Очень вкусные рецепты: с томатным соусом, с рисом, в сливочном соусе и как в детском саду

Сонник: к чему снятся овощи

Сонник толкование снов дверь

Планеты на асценденте и мс Марс на асценденте

Формы внутривидовой изоляции

Презентация «Такие разные птицы

Территория фрг.  Германия. Территория Германии: площадь и географическое положение

Презентация к уроку физики Электрические явления в природе презентация к уроку физики (9 класс) на тему Просмотр содержимого презентации «Природные электрические явления»

Салат из говядины отварной

Как приготовить бисквитный торт с фруктами Бисквит с кусочками фруктов

Как испечь немецкий штрудель?

Запеканка в мультиварке творожная с манкой

Замы Министра обороны РФ: имена, звания, достижения Кто руководит и управляет вс рф

Рецепт с курагой Овсяные хлопья с изюмом рецепт

Как приготовить шницель из курицы на сковороде

Многом связано с тем что. Поддержание нормального функционирования натриевого насоса



В минувшем году в Военно-воздушных силах произошел целый ряд тяжелых авиационных происшествий, повлекших за собой человеческие жертвы и утрату воздушных судов. Увеличение количества катастроф и аварий во многом связано с тем, что в прошлом году в состав ВВС вошла армейская авиация, на долю которой пришлась почти половина всех авиапроисшествий. Основная причина высокой аварийности - так называемый человеческий фактор. На его долю приходится до 70 процентов авиапроисшествий. Особую тревогу у командования ВВС вызывают халатность, беспечность, недисциплинированность летного, инженерно-технического и даже руководящего состава некоторых авиачастей.

Уровень подготовки руководящего состава значительно снижен именно в вопросах организации полетов. Некоторые командиры эскадрилий, командиры полков и их заместители не имеют достаточных навыков в этих вопросах. Падение уровня профессионализма летного состава связано с отсутствием интенсивных и регулярных полетов. В среднем годовой налет колеблется от 25 до 60 часов в зависимости от рода авиации. Например, средний налет в самой воюющей - фронтовой - авиации составляет порядка 40 часов. Думается, снижение профессионализма летчиков требует переосмысления оценки уровня их подготовки. Сегодня ведь далеко не каждый пилот сможет выполнить задание, по сложности соответствующее его квалификации.
Три года назад в авиаполках была введена должность начальника службы безопасности полетов. Но, к сожалению, ощутимых положительных результатов это не дало. Должность считается бесперспективной и не пользуется в войсках популярностью. Помимо низкого тарифного разряда, она еще и не дает служебного роста. Поэтому чаще всего на нее назначают «по остаточному принципу», например командира звена, не имеющего достаточной летной подготовки, или пилотов, имеющих низкую квалификацию. Естественно, у таких офицеров не хватает объема знаний и опыта в вопросах организации полетов. Такое положение дел можно изменить, повысив статут должности до заместителя командира полка по безопасности полетов. Тогда она станет перспективной и будет более привлекательной для профессионалов. Именно по такому пути пошли в авиации Военно-морского флота. Однако из-за проводимых в Вооруженных Силах оргштатных мероприятий в ВВС подобную должность ввести пока не получается.
По словам начальника службы безопасности полетов ВВС генерал-майора Олега Коляды, в причинной связи большинства авиапроисшествий находится низкая подготовка лиц группы руководства полетами. Их неграмотные действия, а порой и бездействие, способствовали перерастанию нештатной ситуации в аварийную и даже в катастрофическую.
2 июля в сложных метеоусловиях в Мончегорске потерпел аварию МиГ-25РБ. Малый опыт летной работы пилота не позволил распознать ложное срабатывание сигнализации об отказе двигателя. Его поспешные и неграмотные действия привели к тому, что летчик покинул практически исправный самолет. Руководитель полетов не оказал при этом необходимой помощи.
7 августа из-за нарушения в организа
ции полетов, недостаточного анализа метеообстановки и преступной халатности группы руководства полетами произошла катастрофа самолета Су-24МР новосибирской армии ВВС и ПВО. Экипаж пытался выполнить посадку в метеоусловиях, к полетам в которых не был подготовлен. Группа руководства полетами не только не оказала им помощь, но и своими командами еще более усложнила ситуацию. Летчики погибли.
В тот же день из-за недисциплинированности заместителя командира эскадрильи, который выполнял полет на предельно малой высоте, произошло столкновение с опорами ЛЭП вертолета Ми-8 Сызранского ВАИ. Экипаж чудом остался жив, машина восстановлению не подлежит. В отношении этого командира экипажа возбуждено уголовное дело.
26 августа на аэродроме Черниговка в воздухе сталкиваются два Ми-24. Не имея достаточного навыка в технике пилотирования, нарушив полетное задание, летчики решают пройти «красивым» строем. К тому же их боевой порядок был составлен из неслетанных пар. Итог - гибель экипажей.
18 сентября под Энгельсом произошла авиакатастрофа стратегического ракетоносца Ту-160. В условиях сложнейшей, быстро меняющейся обстановки экипаж действовал грамотно и безукоризненно, но не смог спасти самолет. Командиру корабля посмертно присвоено звание Героя России, члены экипажа посмертно награждены орденами Мужества. Можно с уверенностью сказать, что это трагическое происшествие произошло из-за отказа авиатехники.
Закончено расследование аварии самолета МиГ-31, произошедшей 14 октября под Ржевом. Пожар на борту возник из-за нарушения технологии выполнения работ на авиаремонтных предприятиях.
- Мы хотим провести переоценку системы подготовки летного состава, - говорит генерал-майор Олег Коляда, разработать практические рекомендации летчику по действиям во внештатных ситуациях. Это позволит исключить неграмотные действия и перерастание ситуации в аварию или катастрофу. Необходимо поднять теоретический и практический уровень подготовки летного состава, а это целый комплекс мероприятий: система занятий, зачетов и тренажей, и конечно же полеты.
Естественно, на безопасность полетов влияет и состояние авиатехники. К сожалению, в некоторых случаях она ненадежна, морально устарела. В связи с недостаточным финансированием закупка новой техники идет слабо. Поэтому главкомом ВВС генерал-полковником Владимиром Михайловым было выбрано единственно верное направление в сторону модернизации авиатехники: оснащение ее новым оборудованием, средствами поражения, системами управления и т.д. Американский В-52 - долгожитель, он принят на вооружение еще в 1950-х. F-15, который уже более 20 лет в строю, также претерпел много доработок. У нас поступают в части модернизированные Су-24, Су-25, Су-27. Будут также модернизированы вертолеты Ми-8 и Ми-24.
Но большинство авиапроисшествий связано прежде всего с непрофессионализмом летного состава, групп руководства полетами. Ведь именно эта группа должна своевременно оказать квалифицированную помощь экипажу при возникновении любой нештатной ситуации.
- А чтобы летчик был профессионалом, он должен летать, - считает генерал-майор Олег Коляда. - Надо летать и увеличивать интенсивность и сложность полетов. А главное - устранять опасные факторы, влияющие на состояние Военно-воздушных сил и безопасность полетов. Ведь безопасность полетов - не отдельное направление деятельности командира. Это повседневные вопросы организации и проведения летной подготовки. Этот комплекс мер должен проводиться всеми должностными лицами, начиная с низового звена - летчика, техника и заканчивая старшими начальниками. Сложные полетные задания и специальные задачи никто не снимал - их решать летному составу. Главное, чтобы пилоты допускались к их выполнению достаточно подготовленными. А командир должен уметь оценить своего подчиненного и знать, кому что доверить. Когда будет четкий профессиональный подход к своему уровню подготовки и у подчиненных, и у командиров, тогда и полетные задания будут выполняться успешно.

Удовлетворение потребности наивысшего уровня достигает, с точки зрения А. Маслоу, всего около 1% людей. Во многом это связано с тем, что люди боятся потерять возможность удовлетворить потребности другого уровня. Например, человек может бояться потерять возможность удовлетворения потребности в безопасности и поэтому идет на высокооплачиваемую, надежную, но неинтересную для него работу. Кроме того, А. Маслоу отмечает, что часть людей просто забывают о существовании потребностей более высокого уровня. Подобное игнорирование высших потребностей может быть связано с тем, что человек очень остро пережил удовлетворение потребности более низкого уровня и стал стремиться к повторению этого переживания, а не к переживаниям других, более высоких уровней.

Однако в реальной жизни мы нередко сталкиваемся с людьми, которые ради высших ценностей жертвуют удовлетворением потребностей низшего уровня и даже готовы идти на смерть. С точки зрения А. Маслоу, претерпевать лишения способны те люди, которые в детстве имели положительный опыт удовлетворения низших потребностей. Поэтому если мы хотим воспитать человека, способного отстаивать свои идеалы и убеждения, противостоять обстоятельствам и успешно заниматься творчеством, необходимо, чтобы в детстве он жил без чрезмерных лишений.

Абрахам Маслоу говорил о том, что для развития личности важно, чтобы ребенок в детском возрасте не находился в состоянии неудовлетворенности, но в то же время не воспринимал возможность удовлетворения потребности как само собой разумеющееся, т.е., чтобы он ценил возможность удовлетворения потребности. Часто родители стараются предугадать желания детей, и, например, еще неголодного ребенка всячески стараются накормить. Можно увидеть, как в детском саду дети не просто отказываются от еды, а относятся к ней пренебрежительно в надежде на то, что дома их накормят чем-то более вкусным. С точки зрения А. Маслоу, пренебрежительное отношение к пище недопустимо. Ребенок должен почувствовать голод, и лишь тогда он на самом деле получит удовлетворение от процесса еды и научится ценить источник удовлетворения потребности.

Можно предположить, что дети самоактуализируются в процессе игровой деятельности, т.е. игровая деятельность позволяет ребенку пережить опыт самоактуализации. Это значит, что игровая деятельность раскрывает способности ребенка-дошкольника, поскольку именно в ней у него реально существует возможность выбора. В игре ребенок действует самостоятельно, а не с помощью взрослого. Однако для того, чтобы такой процесс происходил, необходимо, чтобы ребенок в совершенстве владел игровым процессом, умел устанавливать дружеские отношения с другими детьми, организовывать интересные и наполненные разнообразным содержанием игры со сложным развивающимся сюжетом. Такой уровень развития игровой деятельности возможен, как правило, в условиях специально поддерживающих игровую деятельность детей. Высокий уровень развития игровой деятельности достигается лишь η старшем дошкольном возрасте. К сожалению, в настоящее время существует тенденция сокращения времени на свободную игру детей и замены его занятиями, направленными на подготовку детей к школе. А. Маслоу подчеркивал, что любопытство, неравнодушие, активность в отношении к миру являются неотъемлемыми качествами самоактуализирующейся личности. Однако в условиях ограничения инициативы ребенка и навязывания учебной информации, специально подобранной взрослым, познавательная активность детей падает.

Развитие человека в направлении самоактуализации, по А. Маслоу, предполагает поддержку высказываний ребенка и предлагаемых им суждений. Важно, чтобы в этих суждениях ребенок ориентировался не на чье-то, пусть даже авторитетное, мнение, а смело заявлял о том, как он воспринимает ту или иную ситуацию, в которой оказался. В ходе поддержки инициативы ребенка в различных суждениях нужно стремиться к тому, чтобы он обосновывал свои высказывания и максимально разворачивал их, раскрывая то, что его действительно интересует в наблюдаемом явлении. В этом смысле очень полезно рассматривать с детьми различные произведения искусства и обсуждать с ребенком, что ему нравится, а что ист.

Художница Каролина Жиневич об экспериментах в области био-арта.

Источник: «Nicrophorus vespilloides wiki» участника Evanherk из nl. Под лицензией CC BY-SA 3.0 с сайта Викисклада - https://commons.wikimedia.org/wiki/File:Nicrophorus_vespilloides_wiki.jpg#/media/File:Nicrophorus_vespilloides_wiki.jpg

2 ноября в Польше по традиции после Дня всех святых отмечается день молитв за души умерших, так называемые «задушки». День грустных и светлых, а иногда даже веселых воспоминаний о тех, кто покинул этот мир. День размышлений о бренности бытия, но также о том, что жизнь продолжается. Тема смерти как неразрывной части жизни присутствует у многих польских художников. Но, пожалуй, одну из наиболее оригинальных интерпретаций она получила у молодой художницы Каролины Жиневич, занимающейcя визуальными экспериментами в самом широком смысле этого слова. Критики относят ее творчество к жанру био-арта. Мастерская Каролины - своего рода исследовательская лаборатория, где художница работает с органической материей, используя природные процессы разложения и отмирания тканей. На одной из авторских выставок Каролина Жиневич представила фотографии организмов, поедающих разложенные тела. То есть, тех самых пресловутых «червей», о которых некоторые говорят со страхом и омерзением. При этом художница предложила посмотреть на них как на эстетические объекты и увидеть в них своеобразную красоту и символ продолжения жизни. Мы пригласили Каролину к нашему микрофону.

Вы прикоснулись к очень сложному аспекту, связанному со смертью, а именно к эстетике. Мне кажется, что страх смерти во многом связан с тем, что в субъективном человеческом восприятии мертвое тело выглядит, грубо говоря, неприятно. Вы же приглашаете людей освоиться не столько с самим фактом смерти, сколько с неизбежностью разложения тела. Как эта тема появилась в вашем творчестве?

Каролина Жиневич : «Я уже долгое время работаю с тем, что по-английски называется «abject» (абжект), с тем, что связано с телом, но кажется чуждым и отторгаемым. Например, волосы или ногти. С тем, что когда-то было наше, но после того, как это отпало или орезалось, мы уже не считаем «нашим». Теория «abject» говорит о том, что наиболее отринутым кажется нам труп человека. Тело, которое было жизнью, но сейчас уже ею не является. Когда я начала постигать эту теорию, я поняла, что неизбежно приду к самой трудной теме. При этом меня всегда всегда интересовало формирование визуальных парадоксов. И я знаю, что порой из вещей неприятных, даже уродливых удается создать такие художественные объекты, которые неожиданно восхищают. Всё зависит о того, как мы это оформим. Перемены, происходящие в людях во время контакта с этими объектами меня невероятно привлекают».

- То есть, что бывают такие моменты, когда не всё так однозначно?

Каролина Жиневич : «Мне кажется, что в тот момент, когда я открыла всё прохождение процесса разложения, не говоря уже о насекомых, принимающих участие в этом процессе, я поняла, что они великолепны в своей организации. К примеру жуки-могильщики, живущие, правда, не на человеческих останках, а на трупах животных, имеют социальную структуру, строят дома, кормят детенышей, заботятся друг о друге. Это то, что присуще миру людей, но люди об этом ничего не знают. Вы правы, все эти процессы не так уж однозначны. Надо к этому присмотреться внимательнее, чтобы увидеть там красоту и порядок. А в моем понимании порядок - это источник красоты. Думаю, что в ту минуту, когда мы открываем смысл явления, перестаем бояться».

В Польше тема смерти в художественных произведениях носит, как правило, духовный характер. О физиологии говорят лишь ученые. А вы своими проектами решили нарушить эту традицию?

Каролина Жиневич : «Парадоксально мои проекты очень тесно соприкасаются с духовностью. Поэтому мне лично трудно назвать то, что я делаю, био-артом. Биотехнологические проекты кажутся многим хоть и интересными, но лишенными эмоций. А я стремлюсь к построению, скорее, психологических ситуаций, взаимоотношений и эмоциональных связей своих объектов. Я не отношу себя к людям верующим в Бога, но духовный аспект не связан у меня с религией. Он где-то выше и шире, если можно так сказать. Поэтому даже когда я говорю о смерти в материальном аспекте, то не могу избежать значений, имеющих место в человеческой культуре. И вовсе не хочу этого избегать».

- Что видят люди, которые приходят на ваши выставки?

Каролина Жиневич : «Очень простые вещи. Я считаю, что природа сама по себе настолько совершенна, что я лишь стараюсь добывать из нее самое для меня важное и показывать в простой форме, без излишеств. Это либо живые организмы, но чтобы было видно, что они ухоженные, что им ничто не вредит. Это могут быть также фотографии грибов или наскомых и их взаимодействия с миром людей. В этом суть дела. Однажды я отказалась от живописи и скульптуры, потому что они только муляжи живой материи. И решила в эту материю «войти». Туда, где меньше искусственности, а больше природы».

- О неоднозначности бренности бытия с художницей Каролиной Жиневич беседовала Ирина Завиша.

Все хорошо в меру

Нейтронные звезды - самые интересные объекты во Вселенной. Это очень легко доказать. Возьмем любой объект. Например, ядро звезды. В принципе, при наличии неограниченных технических возможностей, можно любой достаточно массивный объект (начиная с красного карлика) превратить в нейтронную звезду, если его сильно сжать. В природе это происходит так: ядро звезды, довольно занимательный объект сам по себе, сжимается гравитацией. Источники энергии внутри исчерпываются, и ядро начало схлопываться - коллапсировать. Оно сжимается и становится все интереснее.

В физике, как правило, когда параметры достигают экстремальных значений, появляется что-то новое и примечательное. При существенном уплотнении вещество ведет себя не так, как при обычных значениях плотностей. Очень сильные магнитные поля меняют свойства вещества не так, как обычные магнитные поля. Количество переходит в качество. Так вот, представим, что мы сжимаем и сжимаем объект, и становится все интереснее и интереснее. Мы можем наблюдать крайне любопытные физические процессы, не встречающиеся в других условиях. Но если сжать его слишком сильно - получится черная дыра. То есть все исчезнет в этой черной дыре. Это уже не так увлекательно, потому что у черной дыры всего один основной параметр - масса. Кроме этого, черная дыра может вращаться, и это важно для описания пространства-времени в непосредственной близости от нее. Правда, эффект значителен лишь при экстремальном вращении, которое в природе у черных дыр достигается нечасто. Наконец, у дыры может существовать электрический заряд, но в реальности черные дыры почти всегда не заряжены, или заряд очень маленький, так как на заряженный объект быстро натекают заряды противоположного знака. Так что «пережав» и создав черную дыру, мы теряем часть интересной физики .

Во всем нужна мера. Если остановиться вовремя, то из ядра звезды размером десятки тысяч километров получится шарик радиусом километров десять-двенадцать. Это размер крупного города. Там есть сверхплотное вещество, которого нет в земных лабораториях, сверхсильные магнитные поля, которые нельзя создать в лабораторных установках. У вас очень сильная гравитация на поверхности. Все с приставками «сверх-» и «супер-». И вы можете наблюдать это экзотическое физическое многообразие! То есть вы можете непосредственно изучать сверхплотное вещество, которое находится в сверхсильном гравитационном, магнитном, электрическом поле. И это суперинтересно!

Предсказание и открытие нейтронных звезд

Внутри у наших суперобъектов все тоже страшно интересно. Кроме сверхплотного вещества, там может быть сверхтекучесть протонов, нейтронов, разные экзотические состояния, новые элементарные частицы. Это чрезвычайно любопытные для исследователя объекты.

Нейтронные звезды (что нечасто бывает в астрономии) вначале предсказали. Произошло это еще в 30-е годы ХХ века. Началось все с работы Льва Ландау, написанной даже до открытия нейтронов. В статье было высказано предположение о существовании сверхплотных звездных конфигураций с плотностью порядка ядерной. Но ничего не говорилось о возможном происхождении таких звезд, о том, где и как их искать. Настоящее откровение случилось в 1934 году, когда Вальтер Бааде и Фриц Цвикки опубликовали коротенькую заметку, в которой сумели правильно предвидеть, что нейтронные звезды рождаются в результате вспышек сверхновых (а потому их можно обнаружить в остатках этих взрывов).

Однако несмотря на то, что это весьма интригующее предсказание, никто не бросился искать нейтронные звезды. Дело в том, что найти десятикилометровый шарик где-то, бог знает где (в далеком остатке сверхновой), очень трудно. В итоге обнаружили их случайно только в 1967 году (Бааде не дожил до этого момента, а Цвикки - да). Никто не смог догадаться, что, если у компактных объектов есть сверхсильные магнитные поля (которые предсказывались за несколько лет до открытия пульсаров в работах Виталия Гинзбурга и Леонида Озерного) и они быстро крутятся, то в результате должны формироваться строго периодические радиоимпульсы (это неудивительно, специалисты до сих пор спорят о природе механизма генерации радиоизлучения пульсаров). А именно такие радиоимпульсы и были открыты.

Сама по себе история открытия радиопульсаров весьма драматична. Она в деталях рассказана во множестве книг и статей. Напомним, что поскольку пульсарный сигнал выглядит искусственным - слишком уж точным и коротким был период, как будто работает радиомаяк или еще какое-то устройство, - то первая мысль была о том, что астрономы уловили послание внеземного разума. Первый источник даже назвали LGM-1, т.е. Little Green Men-1. Уже тогда инопланетян называли маленькими зелеными человечками. Источник впоследствии получил «нормальное» имя - PSR B1919+21, но его первое обозначение явственно свидетельствует о неординарности открытия.

В 1960-е годы внеземной разум был очень модной темой. Наверное, это было связано с тем, что человек как раз вышел в космос и казалось, что мы вот-вот полетим к звездам. Тогда были потрачены довольно большие ресурсы на поиски искусственных внеземных сигналов. Активно проводились и наблюдения, и обсуждения. Собирались крупные международные симпозиумы с участием ведущих ученых. Кстати, современный скептицизм ученых относительно всяких зеленых человечков оправдан тем, что ученые лет 10–15 очень серьезно исследовали эту проблему, но не нашли ничего хотя бы немного обнадеживающего. Показательно, что в начале программы по изучению внеземного разума назывались CETI - Communication with ExtraTerrestrial Intelligence. Но потом быстро поняли, что ни о каком контакте в ближайшее время речь не пойдет, и возник термин SETI - Search for ExtraTerrestrial Intelligence, сохранившийся до сих пор.

Осознав, что радиопульсары - это естественный феномен, надо было понять, какие же астрономические объекты могут вести себя таким образом. Ввиду наличия короткого стабильного периода было всего два кандидата: это или пульсации белых карликов, или вращение нейтронных звезд. Конечно, белые карлики тоже вращаются, а нейтронные звезды пульсируют, но периоды не подходят. Чтобы выбрать что-то одно, нужно было измерить, как период изменяется со временем. Ясно, что со временем и энергия вращения, и энергия пульсаций должны уменьшаться. Но в одном случае (при пульсациях) период будет тоже уменьшаться, а в другом расти.

Если мы рассмотрим вращение, то потери энергии должны приводить к его замедлению. То есть период потихоньку возрастает. Пульсации ведут себя не так. Возьмите упругий шарик и вертикально уроните его на гладкую твердую поверхность. Он будет прыгать, энергия будет теряться. Но вы услышите, что частота ударов все время растет: та, та, та-та, та-та-та. Это наглядно иллюстрирует, что при затухании пульсаций период должен становиться короче.

Радиоастрономы довольно быстро смогли обнаружить, что периоды радиопульсаров растут. Совсем чуть-чуть: чтобы период увеличился на секунду, обычно требуется несколько миллионов или даже десятков миллионов лет. Но этот рост однозначно позволял сказать, что мы имеем дело не с пульсациями белых карликов, а с вращением нейтронных звезд.

Именно энергия вращения в конечном счете превращается в радиоизлучение. И не только в него. В радиодиапазоне излучается ничтожная доля от полного энерговыделения. Если нейтронная звезда является радиопульсаром, то она излучает не только в радио-, но и во всех других диапазонах, просто не всегда это видно. Стабильность излучения пульсаров делает их источниками, полезными в народном хозяйстве. Во-первых, их можно использовать как эталон точного времени. А во-вторых, по ним можно ориентироваться. И здесь как раз лучше всего подходят радиопульсары, видимые в рентгеновском диапазоне.

Рентгеновские детекторы становятся все дешевле, компактнее и надежнее. Многие радиопульсары, видимые в рентгеновском диапазоне, представляют собой яркие стабильные источники. Их легко увидеть и трудно с чем-нибудь перепутать, так как благодаря пульсациям излучения с точно известным периодом они как бы несут индивидуальные метки. Сейчас и в России, и в Европе, и в США активно разрабатывают системы ориентации спутников по рентгеновским пульсарам. Это особенно важно для аппаратов, которые работают в автоматическом режиме вдали от Земли. Недаром и на известных пластинах с краткой информацией о человеке и нашей планете, установленных на аппаратах серии «Пионер» и «Вояджер», положение Земли было показано относительно радиопульсаров, чтобы братья по разуму могли при случае найти нас. Если спутник находится в Солнечной системе, но далеко от Земли, то довольно трудно с высокой точностью определить его расстояние от Солнца. Наблюдения миллисекундных пульсаров в рентгеновском диапазоне позволят сделать это с точностью в несколько сот метров без необходимости постоянной связи с Землей.

Итак, радиопульсары были открыты. За это дали Нобелевскую премию. Дали ее не тому человеку. Это тоже отдельная, довольно типичная, история: главный автор открытия - Джоселин Белл - остался без приза. Но важно, что нейтронные звезды наконец-то обнаружены и люди начали их изучать.

Радиопульсары и рентгеновские пульсары - старый зоопарк

С радиопульсарами астрономам повезло: у нейтронных звезд вдруг оказались своего рода «бубенчики». Выяснилось, что молодые нейтронные звезды - не просто 10-километровые горячие шарики, они вдобавок излучают мощные периодические радиоимпульсы. Но был и еще один сюрприз, правда, авторам его открытия не так повезло.

С Земли невозможно наблюдать рентгеновское излучение космических объектов: все поглощается атмосферой. Приборы надо запускать в космос. Астрономы смогли начать это делать в начале 1960-х, устанавливая детекторы еще не на специализированных спутниках, а на ракетах, полет которых продолжался совсем недолго. Однако Риккардо Джиаккони, Герберт Гурски и их коллеги обнаружили несколько рентгеновских источников. Одним из них был объект, получивший наименование Sco X-1. Sco - обозначение созвездия Скорпион, именно там находится источник. X указывает на то, что это рентгеновский источник, во многих странах рентгеновские лучи называют Х-лучами (как обозначал их и сам Вильгельм Рентген). Наконец цифра 1 говорит о том, что это первый обнаруженный рентгеновский источник в созвездии Скорпион.

Теперь мы знаем, что источник Sco X-1 - это тесная двойная система с нейтронной звездой. Вещество нормальной звезды перетекает на компактный объект, будучи захваченным его гравитацией. Этот процесс называется аккрецией. В результате падения вещества на нейтронную звезду выделяется много энергии. Поскольку газ разогревается до высокой температуры, мы видим яркий рентгеновский источник. Примерно такое понимание природы Sco X-1 возникло через несколько лет после открытия, еще до обнаружения радиопульсаров. Но не было решающего доказательства.

Ключевым аргументом мог бы стать период вращения нейтронной звезды. Текущее на нее вещество - это плазма. Она неохотно двигается поперек силовых линий магнитного поля.

Поэтому вещество каналируется на магнитные полюса, нагревая небольшую площадь поверхности. Такие горячие пятна называют полярными шапками. Если шапка повернута к нам - мы видим большой поток излучения. А когда нейтронная звезда повернута к нам холодным боком - меньший. В результате излучение будет пульсирующим. Такие источники называют рентгеновскими пульсарами .

Если период пульсаций короткий - значит источник очень компактный и прочный (иначе вращение разорвало бы его). Кроме того, по свойствам излучения можно понять, что оно приходит от очень небольшого объекта. Все вместе это было бы доказательством того, что аккреция идет на нейтронную звезду. Но Sco X-1 не пульсирует. Рентгеновские пульсары были обнаружены уже после того, как открыли радиопульсары. Так что шанс обнаружить нейтронные звезды по их рентгеновскому излучению был упущен. Правда, за огромный вклад в развитие рентгеновской астрономии Риккардо Джиаккони получил свою Нобелевскую премию, но это было уже в 2002 году, когда Джиаккони исполнилось 70 лет.

Таким образом, к началу 1970-х сформировалась такая картина. Молодые нейтронные звезды видны как радиопульсары благодаря своему быстрому вращению и сильным магнитным полям. А более старые компактные объекты могут стать видны, если они входят в тесную двойную систему, когда начинается перетекание вещества с обычной звезды на нейтронную.

В старом зоопарке нейтронных звезд было два типа зверей: радиопульсары и аккрецирующие нейтронные звезды. И казалось, что других сюрпризов не будет. К счастью, реальность оказалась богатой на чудеса.

Магнитары, Великолепная семерка и все-все-все - новый зоопарк нейтронных звезд

Вначале казалось, что вырисовывается более или менее простая картина. Происходит вспышка сверхновой и рождается компактный объект. Действительно, внутри остатков сверхновых, внутри разлетающейся туманности, мы находим нейтронные звезды. У них сильные магнитные поля, в тысячи миллиардов раз больше, чем на Земле. У них быстрое вращение. Они могут рождаться с периодами 10–20 миллисекунд и даже меньше. Это очень-очень короткий период. Скорость вращения на экваторе приближается к скорости света. Такой вот нестандартный объект. Хотя в конце концов даже самые нестандартные могут оказаться типичными, если они все на одно лицо. Радиопульсары казались похожими друг на друга. А самым главным прототипом считался пульсар в Крабовидной туманности.

Этот пульсар был открыт в 1968 году. Его обозначение PSR B0531+21 (где числа - координаты на небе, а буква «B» говорит о том, что координаты соответствуют эпохе 1950 года). Он находится в туманности, на месте которой в 1054 году китайские астрономы наблюдали взрыв сверхновой. (В Европе 1054 год отмечен Великой схизмой - расколом между Римской и Византийской церквами. Странно, что никто не заметил вспышку и не связал ее с концом света.) Сейчас период вращения нейтронной звезды, наблюдаемой во всех диапазонах спектра, составляет 33 миллисекунды. Но при рождении период был менее 20 миллисекунд. Магнитное поле пульсара примерно в 10 тысяч миллиардов раз больше земного.

Но в последние 15–20 лет стали открывать необычные молодые нейтронные звезды, не похожие на пульсар в Крабе. Открыли нейтронные звезды с очень большими магнитными полями - с полями в тысячу раз больше, чем у обычных радиопульсаров. Открыли молодые нейтронные звезды и с маленькими магнитными полями - в тысячу раз меньше, чем у обычных радиопульсаров. Открыли звезды, которые очень медленно вращаются при рождении. Медленно означает, что период вращения равен не десяти миллисекундам, а, скажем, одной секунде. Одна секунда для нас - все равно быстро, но это в сто раз медленнее, чем вращаются другие. Есть загадочная нейтронная звезда в остатке сверхновой RCW103. Обнаружилось, что ее излучение меняется с периодом почти семь часов, правда, пока нет полной уверенности, что это именно период вращения компактного объекта (например, это может оказаться орбитальным периодом или еще чем-то). Получился целый большой зоопарк молодых нейтронных звезд с очень интересными свойствами.

Сейчас в дополнение к радиопульсарам, которых известно более 2000 штук, выделяют следующие классы молодых нейтронных звезд. Во-первых, источники мягких повторяющихся гамма-всплесков. Во-вторых, аномальные рентгеновские пульсары. Две эти группы источников объединяют в общий класс магнитаров, их общее число - примерно три десятка. В-третьих, радиотихие нейтронные звезды в солнечных окрестностях, называемые Великолепной семеркой. В-четвертых, центральные компактные объекты в остатках сверхновых, их известно около десятка. Они тоже радиотихие, как и Семерка, они испускают тепловое излучение, но они моложе, у них короче периоды вращения и меньше магнитные поля. Наконец, надо упомянуть так называемые вращающиеся радиотранзиенты (Rotating radio transients - RRATs). Это явно родственники радиопульсаров, демонстрирующие очень короткие радиоимпульсы. Однако природа импульсов неясна, и источники выделяют в отдельный класс.

Совершенно непонятно, почему они такие разные. Казалось бы, все должно быть примерно одинаково. Вроде бы существует единый универсальный процесс: схлопнулось ядро звезды, и образовалась нейтронная звезда. Массы примерно одинаковые, радиусы - тоже. А вот вращение, магнитные поля и скорости - разные. Поэтому и наблюдаются они как непохожие друг на друга источники. В наши дни это очень актуальная задача - объяснить, почему новорожденные нейтронные звезды выглядят такими непохожими и как они потом эволюционируют.

Астрономы обнаружили такой парадокс. Если взять разные типы молодых нейтронных звезд и определить темп рождения в каждой популяции, то суммарный темп рождения молодых компактных объектов получается больше темпа сверхновых с коллапсом ядра. Странный результат. Значит, что-то мы делаем не так. Конечно, можно предположить, что мы ошиблись сразу во всех темпах, причем в одну сторону и в несколько раз. Но это вряд ли. Значит, видимо, просто нельзя складывать скорости рождения разных нейтронных звезд. Может быть, не совсем правильно думать, что все они рождаются настолько разными и их линии жизни никогда не пересекаются. Ведь если, например, сложить темпы рождаемости разных групп населения на Земле - мальчиков, девочек, физиков, химиков, болельщиков «Спартака», болельщиков ЦСКА, то окажется, что суммарный темп больше, чем темп рождения людей. Человек может, к примеру, родиться одновременно мальчиком, получить физическое образование и болеть за «Спартак». А может родиться девочкой, химиком, болельщицей ЦСКА, а потом сменить пол, стать физиком и начать болеть за «Барселону». То есть произойдет очень интересная эволюция. Может быть, что-то подобное происходит и у нейтронных звезд. То есть существуют какие-то эволюционные связи между пульсарами и магнитарами, магнитарами и Великолепной семеркой, Великолепной семеркой и центральными компактными объектами и т. д.

Источники энергии нейтронных звезд

Все эти типы источников сейчас активно изучаются. Разные молодые нейтронные звезды можно наблюдать различными способами, потому что они очень по-разному могут выделять энергию. В астрономии это всегда очень важно, потому что астрономия - единственная естественная наука, где мы не можем экспериментировать с реальными объектами исследования.

Все знают, как биологи изучают лягушек. Берут несчастных животных и режут их на мелкие кусочки, а потом через эти кусочки могут еще пропустить электрический ток. Физики, изучая частицы, разгоняют их, сталкивают - и смотрят, что получается. Мы не можем сталкивать нейтронные звезды, как-то ковыряться в них, бурить. Мы можем только наблюдать издалека. Поэтому важно, как и какая энергия выделяется в этих источниках.

Открытие нейтронных звезд с большими магнитными полями вызвало у астрофизиков огромный интерес, потому что эти объекты могут выделять энергию магнитного поля. Здесь важно напомнить, что магнитное поле порождается электрическими токами. Соответственно, если у нас присутствуют сильные токи, то появляются сильные поля. Так немножко понятнее. Ведь не так легко представить себе, как выделить энергию магнитного поля. Но все очень хорошо понимают, что если воткнуть пинцет в розетку, то будет короткое замыкание и все может перегореть. Выделяется энергия тока!

На нейтронных звездах с большими полями могут проходить короткие замыкания. Мы не очень пока понимаем, как и где они происходят - снаружи или в коре нейтронной звезды. Но при этом выделяется колоссальное количество энергии. За одну десятую секунды выделяется 10 46 эрг (светимость Солнца - 4 на 10 33 эрг в секунду, т. е. Солнце излучит 10 46 эрг лишь за 100 000 лет!). Короткое время - десятую долю секунды - она светит ярче, чем большая галактика, т. е. система, состоящая из сотен миллиардов звезд. Это очень много. Это страшно интересно. И, естественно, когда очень много и страшно интересно, это очень трудно исследовать, изучать, потому что возникают очень сложные физические процессы. И ученые сейчас бьются, используют разные конкурирующие теории, чтобы описать эти явления.

С другой стороны, нейтронные звезды мы можем наблюдать просто потому, что на них что-то падает - идет аккреция. Каждый грамм, упавший на нейтронную звезду, дает около 10 в 20 эрг энергии (один грамм тротилового эквивалента - это 4×10 10 эрг, т.е. в два миллиарда раз меньше!). Это много - примерно 10% от mc 2 . Если вы возьмете водородную бомбу, взорвете, посчитаете, сколько энергии выделилось (будет примерно 10 22 эрг, что соответствует примерно 250 килотоннам тротилового эквивалента). А потом возьмете просто камень такой же массы, как у бомбы, и бросите на нейтронную звезду, то выделится гораздо больше энергии. При самых эффективных термоядерных реакциях выделяется всего лишь порядка 1% от mc 2 . Аккреция дает намного больше! Чтобы получить 10 22 эрг, надо бросить на нейтронную звезду камень массой всего лишь... сто грамм!

Радиопульсары светят не за счет аккреции и не за счет диссипации энергии токов. Их «кладовая» - это вращение нейтронной звезды. Со временем период, за который компактный объект совершает оборот вокруг своей оси, растет. А энергия вращения обратно пропорциональна квадрату этого периода. Если мы начинаем с одной миллисекунды, то запас соответствует излучению с солнечной светимостью на протяжении 100 миллиардов лет! Неудивительно, что молодые сильно замагниченные нейтронные звезды, быстро «разбазаривающие» предоставленную им звездой-прародительницей энергию вращения, являются очень яркими источниками. Настоящая «золотая молодежь».

Причем быстрое вращение - это не единственное их наследство. Они еще и рождаются очень горячими. Запасов тепловой энергии тоже может хватить надолго. Именно благодаря расходованию ими запасенного тепла мы видим некоторые компактные объекты в остатках сверхновых.

Многообразие процессов с мощным выделением энергии дает разнообразные наблюдательные проявления. Поэтому ученые разными способами пытаются изучать нейтронные звезды. Используются самые разнообразные инструменты. Это и радиотелескопы - люди изучают радиопульсары и другие проявления нейтронных звезд в самой длинноволновой части спектра. Это и рентгеновские телескопы, потому что, когда энергии много, температура большая, то обычно испускается жесткое излучение. Это легко понять. Если вам нужно унести сто долларов, вы можете взять одной стодолларовой бумажкой или ста бумажками по одному доллару. Положить в карман. Мелкие даже удобнее. Но если вам надо унести сто миллионов долларов, то попробуйте посчитать, сколько это будет купюрами по одному доллару - будет несколько мешков. Столько не унести. Поэтому нужно брать крупными купюрами. Даже есть специальные купюры - тысячедолларовые, которые в магазинах не принимают. В природе все устроено точно так же. Когда в маленькой области пространства выделяется очень много энергии, то ее уносит самыми «жирными» рентгеновскими или гамма-квантами. И в нейтронных звездах это часто происходит. Они маленькие и компактные. И когда они светят, энергия уносится рентгеновским или гамма-излучением. (Продолжая аналогию, можно заметить, что для хищений в особо крупных размерах используют разные теневые схемы без участия наличных, а нейтронные звезды, когда энергии очень много, теряют ее за счет испускания нейтрино, крайне плохо взаимодействующих с веществом и поэтому способных незаметно покидать недра компактных объектов.)

Но нейтронные звезды светят и в оптическом диапазоне. Например, возьмем самый знаменитый пульсар - пульсар в Крабовидной туманности. Можно посмотреть на нее в очень мощный оптический телескоп и заметить пульсации блеска одной из звездочек. Конечно, глазу это будет тяжело - слишком быстро меняется блеск. Но с помощью довольно простых приборчиков это можно сделать. Вообще говоря, классические астрономы, работавшие с данными оптических телескопов, могли это открыть до обнаружения радиопульсаров, если бы знали, куда смотреть. Тогда они бы опередили радиоастрономов.

Итак, у нейтронных звезд может быть четыре основных источника энергии: вращение, энергия токов, тепло и аккреция. Первые три во многом связаны с тем, как нейтронная звезда рождалась - со сверхновой и свойствами взрывающегося ядра. В некоторых случаях, если часть вещества, выброшенного при взрыве, падает обратно на новорожденный компактный объект, аккреция также может стать источником энергии, связанным с параметрами сверхновой.

Отпечатки «пальцев» сверхновых на нейтронных звездах

Хотя нейтронные звезды крайне любопытны сами по себе, особенно интересно их исследовать, потому что они рождаются в бурном процессе взрыва сверхновой. А мы очень плохо знаем, как сверхновые взрываются. Мы видим их сотни в год, и это количество только растет с вводом в строй новых инструментов, специально предназначенных для поисков вспыхивающих объектов. Но посчитать детально модель такого взрыва очень тяжело. Там перемешано очень много всякой сложной физики. И по большей части авторы разных сценариев взрывов пользовались какими-то упрощениями. Например, кто-то не учитывал сильные магнитные поля, кто-то не учитывал какие-то термоядерные реакции, кто-то приближенно считал гравитацию, кто-то считал двумерную модель взрыва и т.д. А до недавнего времени сверхновые вообще не «взрывались» в компьютерах, если расчеты проводили в трех измерениях. Приходилось руками вписывать дополнительный импульс, добавлять «поршень», который расталкивал бы вещество. Только недавно, в 2012 году, наконец-то астрофизикам удалось продвинуться и взорвать «компьютерную сверхновую». Они смогли учесть эффекты Общей теории относительности более корректно, чем раньше. Это позволило получить взрыв и разлет вещества. Но все равно есть ощущение, что, хотя многое сделано, многое еще предстоит, поскольку разлет получился только в двумерном моделировании, а настоящая вспышка сверхновой происходит в трех измерениях. Кроме того, в этих расчетах не учитывались некоторые потенциально важные физические процессы.

Сейчас, в первую очередь благодаря росту мощности компьютеров, ученые активно продвигаются в этом направлении. Правда, наблюдатели постоянно подкидывают все новые и новые загадки, обнаруживая все более и более странные сверхновые. Но даже если взрыв смоделирован успешно, это надо сравнивать с разнообразными наблюдениями.

Нейтронные звезды, рожденные в процессе взрыва ядра звезды, несут на себе его отпечаток. Например, они могут очень быстро двигаться. Представьте, у вас есть компактный объект диаметром 20 километров с массой раза в два больше, чем у Солнца, а лететь он может со скоростью несколько тысяч километров в секунду. Хотя до взрыва скорость звезды-прародителя составляла всего лишь 10 км/с, т. е. она практически покоилась относительно своих соседей. Такая ситуация возможна, потому что если мощный взрыв чуть-чуть сделать несимметричным, то отдача заставит образовавшийся компактный объект быстро двигаться. Энергии хватит. И это тоже надо воспроизводить в расчетах. Нужно, чтобы модели рождения нейтронных звезд, т.е. модели взрывов сверхновых, объясняли как сами большие скорости, так распределение компактных объектов по скоростям: сколько рождается медленных, а сколько - быстрых. Таким образом, изучая скорости нейтронных звезд (и черных дыр), мы косвенно получаем информацию о физике взрыва сверхновой.

Точно так же масса, вращение, величина магнитного поля и другие параметры нейтронной звезды несут на себе отпечаток взрыва сверхновой. Частичное выпадение вещества после взрыва обратно на компактный объект может увеличивать массу и уменьшать наблюдаемое магнитное поле, асимметрия взрыва может раскручивать нейтронную звезду и менять направление оси вращения. Чем лучше мы понимаем происхождение начальных свойств нейтронных звезд, тем лучше понимаем физику сверхновых.

Я абсолютно убежден, что в наши дни область астрофизики, изучающая нейтронные звезды, не только находится на стадии роста, но и в течение ближайших лет будет оставаться очень активной областью, которая будет давать много важных результатов не только астрофизикам, но и физикам вообще. То есть она будет полезна для фундаментальной науки в целом. И связь со сложной физикой взрыва сверхновой - лишь один из примеров. Многие другие возникают по мере рассмотрения того, как параметры компактных объектов меняются со временем.

О физике черных дыр можно прочесть в книге Леонарда Сасскинда «Битва при черной дыре», издательство «Питер» (2013).

Иногда возникает путаница между аккрецирующими рентгеновскими пульсарами в двойных системах, пульсирующими тепловыми источниками в остатках сверхновых, аномальными рентгеновскими пульсарами и радиопульсарами, наблюдаемыми и в рентгеновском диапазоне. Это четыре разных типа объектов, чья светимость связана с разными источниками энергии: аккреция, запасы тепла, энергия магнитного поля и вращение соответственно. Но все они являются источниками пульсирующего рентгеновского излучения, и период пульсаций равен периоду оборота звезды вокруг своей оси. В этом параграфе мы говорим об аккрецирующих нейтронных звездах в двойных системах.

3 теория Фэйрбейрна

Теоретическая система Рональда Фэйрбейрна основана на клинических исследованиях сновидений и работе с истерическими и шизоидными больными. В основе патологии последних он обнаружил травматические переживания ребенка, которые заставляют его чувствовать себя нелюбимым. Когда врожденные стремления к взаимодействию, особенно те, что основаны на инкорпоративных желаниях, не находят ответа, эти дети начинают чувствовать, что их любовь была плохой или никчемной. Депривация не только усиливает их оральные потребности, но и придает им агрессивное качество, а фрустрация, вызванная отсутствием материнской любви, становится причиной восприятия этими пациентами своей любви как требовательной и агрессивной. В результате они отказываются от спонтанных отношений с матерью и чересчур погружаются во "внутренний мир", тем самым расщепляя Эго на две части - взаимодействующую с внешними фигурами и связанную с внутренними объектами.

Мелани Кляйн, работы которой во многом повлияли на взгляды Фэйрбейрна, в свое время постулировала существование первой критической фазы развития ребенка, когда тот начинает защищать интернализированную им мать от деструктивных импульсов, исходящих от влечения к смерти. Эту фазу, характеризующуюся тревогой по поводу утраты хорошего объекта, Кляйн назвала депрессивной позицией. Фэйрбейрн считал, что в этой фазе ребенок должен достигнуть уровня структурированной внутренней безопасности, тесно связанной с образом хорошей матери. Усиление тревоги обусловлено не столько утратой хорошего объекта, сколько угрозой потери зарождающейся Самости, то есть дезинтеграции на фрагменты, эквивалентной смерти или сумасшествию. Заимствовав термин Кляйн, Фэйрбейрн предложил называть эту первую критическую фазу шизоидной позицией. Тесно связанные между собой, депрессивная и шизоидная позиции рассматриваются им как источник дефектов развития, угрожающих формированию Эго. Разделяя взгляды Кляйн относительно сведения всех компонентов развития к этим двум ранним позициям, Фэйрбейрн, однако, не принял ее концепцию влечения к смерти. Он в большей степени делал акцент на факторах внешней среды, а именно на качестве материнской любви и заботы как решающих для раннего развития.

Фэйрбейрн пришел к выводу, что теория либидо должна быть заменена теорией, основанной на сугубо психологических факторах отношений с матерью, а затем и с отцом, а не на гипотетических инстинктивных энергиях и зональной разрядке напряжения. То есть Фэйрбейрн утверждал, что основное внимание психоаналитик должен уделять не трансформациям инстинкта, а событиям в рамках отношений зависимости от других, без которых развитие невозможно.

Клинические наблюдения позволили Фэйрбейрну разработать собственную концепцию, названную им теорией объектных отношений личности. Его модификация психоанализа включает два существенных отступления от Фрейда. Во-первых, Фэйрбейрн понимал Эго как структуру, существующую с самого рождения, а не как развивающуюся из Ид в результате его отношений с реальностью. Эго располагает собственной энергией, не заимствованной из Ид. Эта идея соответствовала представлениям современной физики, согласно которым энергия не мыслится вне структуры или материи. Рассматривая либидо как функцию Эго, а агрессию как реакцию на фрустрацию или депривацию, Фэйрбейрн обходится без понятия независимого Ид.

Второе отступление Фэйрбейрна касается самой энергии, для обозначения которой он оставляет лишь прежнее название "либидо". В его концепции Эго направлено не на поиск удовольствия, как у Фрейда, а на поиск объекта. Цель либидо, согласно Фэйрбейрну, состоит не в ослаблении напряжения, а в установлении удовлетворительных взаимоотношений. Поэтому, будучи нацеленным на удовлетворение базальной человеческой потребности - отношений с другими, - ребенок с самого рождения ориентируется на окружающую реальность. Это положение соответствует современным биологическим концепциям, согласно которым организм ребенка представляет собой функциональную целостность, существующую в специфических условиях внешней среды. Фэйрбейрн оспаривает точку зрения Фрейда об активации ребенка инстинктами или другими силами, связанными с эротогенными зонами. Ребенок прежде всего ориентирован на мать, достижению удовлетворительных отношений с которой служат эротогенные зоны. Они, следовательно, являются не более чем "техническими средствами" или "каналами", необходимыми для выражения либидинозных потребностей ребенка в его отношениях с объектами, а не источником либидинозных стимулов или первичными детерминантами либидинозных целей.

Постепенно Фэйрбейрн разработал модель психической структуры. Используя концепцию Кляйн о внутреннем мире воображаемых отношений, он разработал системный теоретический подход к изучению нормального развития и формирования патологических состояний, представленный в терминах динамических структур Самости. Структурная модель Ид - Эго - Супер-Эго заменена им на базисную эндопсихическую структуру, единую, всеобъемлющую психическую структуру, для обозначения которой он сохранил термин "Эго". Будучи источником энергии, Эго с самого начала ориентировано на внешнюю реальность и установление отношений с первичным объектом - грудью матери. Развитие психической структуры происходят постепенно - от чистого Эго через процессы интернализации, расщепления и вытеснения материнского объекта.

Неизбежные неудовлетворенность и фрустрация во взаимоотношениях ребенка с матерью, особенно связанные с сепарацией, приводят к интернализации объекта, одновременно и удовлетворяющего, и не удовлетворяющего. Реакция ребенка амбивалентна, возникает тревога, чувство безопасности нарушено, появляются защитные действия. Расщепление, которое Фэйрбейрн рассматривал как универсальный психический феномен, необходимый для того, чтобы справиться с фрустрацией и чрезмерным возбуждением ранних человеческих отношений, является нормативным (хотя иногда и патологическим) защитным механизмом, способствующим дифференциации и организации Эго (Самости). Доступные объективации аспекты объекта отщепляются и вытесняются, образуя внутренний мир. Одни внутренние объекты репрезентируют людей в целом, другие - такие части, как грудь или пенис. Эти целостные или частичные объекты могут вытесняться или проецироваться на внешние объекты. Наиболее выраженные качества предшествующей, недифференцированной структуры репрезентации объектов, называемой исходным объектом, расщепляются на два парциальных "плохих" объекта - отвергающий объект, то есть фрустрирующий или преследующий, и возбуждающий объект, то есть привлекающий к себе, соблазнительный (доэдипов материнский парциальный объект, грудь, и эдипов объект, пенис, отец, регрессивно воспринимаемый как парциальный объект). Остающееся ядро является десексуализированным, оно включает в себя идеальный объект, то есть изначально интернализированные как комфортные и удовлетворяющие аспекты груди. Исходный объект включает в себя любовь и ненависть ребенка. В дальнейшем он разделяется на принятый объект (прежний термин для обозначения идеального объекта) и отвергнутый объект; интернализированный плохой объект с двумя компонентами или дополнительными объектами - возбуждающим и отвергающим - подвергается вытеснению со стороны центрального Эго. В своих ранних работах Фэйрбейрн рассматривал принятый (идеальный) объект как "ядро Супер-Эго".

Фэйрбейрн считал Эго либидинозно привязанным к объектам; поэтому расщепление объекта предполагает расщепление частей Эго, которые с ним связаны. Внутренний мир ребенка в конце концов достигает более или менее стабильного состояния, в котором Эго связано с множеством внутренних объектов. Со временем из исходного, или неразделенного, Эго развивается трехкомпонентная структура.

1. Центральное Эго - "остаток неразделенного Эго", выполняющее функцию вытеснения. Фэйрбейрн называл его "Я", подразумевая, что оно объединяет бессознательные, предсознательные и сознательные элементы, хотя он подчеркивал его сознательную природу. Ринсли (1982) считает его аналогом фрейдовского реального Я и подчеркивает его сходную с объектом природу.

2. Либидинозное Эго представляет собой отщепленную и вытесненную часть исходного Эго, вступающего в либидинозные отношения с возбуждающим объектом. Фэйрбейрн понимал эту часть как аналог классического Оно. Ринсли сравнивает либидинозное Эго с фрейдовским ректифицированным Я-удовольствием.

3. Антилибидинозное Эго (первоначальное называвшееся внутренним саботажником) является отщепленной и вытесненной частью исходного Эго, вступающего в либидинозные отношения с отвергающим объектом. Отождествленное с агрессивным родителем, антилибидинозное Эго представляет собой предшественника более поздней структуры, которая сливается со сдерживающими аспектами того, что Фрейд понимал как Я-идеал и Сверх-Я. В отличие от постулированных Фрейдом структур, антилибидинозное Эго порождает страх, но не чувство вины.

Таким образом, Сверх-Я Фрейда рассматривается Фэйрбейрном как "комплексная структура, включающая в себя а) идеальный объект или Эго-идеал; б) антилибидинозное Эго и в) отвергающий (антилибидинозный) объект" (1963, с. 224). То, что он называл моральной защитой, являлось попыткой со стороны Супер-Эго сохранить хорошие объектные отношения с плохими объектами, вынуждая к интернализации отщепленного (фрустрирующего и возбуждающего) объекта.

Раннее расщепление может модифицироваться или интенсифицироваться родительскими установками. Фэйрбейрн считал эту структуру универсальным паттерном процессов развития и назвал базальной эндопсихической ситуацией, имея в виду не что иное, как шизоидную позицию. Она возникает вследствие "агрессивной установки" центрального Эго по отношению к либидинозному и антилибидинозному Эго, которые оно отщепляет от Самости и вытесняет. Фэйрбейрн не признает первичность эдипова комплекса, который, согласно его теории, является производным от более ранних структур.

Фэйрбейрн определяет вытеснение либо как непосредственное, либо как косвенное. Первое состоит в "установке отвержения" со стороны центрального Эго в отношении возбуждающего и отвергающего объектов, а затем в отношении присоединяющихся к ним либидинозного и антилибидинозного Эго. Косвенное вытеснение представляет собой "бескомпромиссную враждебную установку [антилибидинозного Эго] в отношении либидинозного Эго" и связанного с ним возбуждающего объекта. Дополнительные объекты (отвергающий и возбуждающий) и дополнительные Эго (либидинозное и антилибидинозное) вытесняются и поэтому являются бессознательными, однако Фэйрбейрн не поясняет, каким образом вытесненные (то есть отщепленные) психические содержания становятся бессознательными. Более того, вытеснение и расщепление рассматриваются по сути как один и тот же процесс.

Фэйрбейрн заменяет предложенную Абрахамом схему либидинозного развития и его фаз (оральная, анальная, фаллическая) моделью развития объектных отношений, основанной на трансформации зависимости от матери. Он постулирует следующие три стадии.

1-я стадия, стадия инфантильной зависимости, знаменуется абсолютной, неизбежной зависимостью от материнской груди как от биологического объекта, с которым вступает в отношения рот ребенка. Однако доминирующая установка инкорпорации характеризует эту стадию в большей степени, чем либидинозный катексис рта, выражающийся в интернализации груди. Эта стадия включает в себя первичную идентификацию, под которой Фэйрбейрн понимал нечто сходное со слиянием с объектом, пока еще не полностью дифференцированным от Самости. Таким образом, инфантильная зависимость, первичная идентификация и нарциссизм, согласно Фэйрбейрну, взаимосвязаны. Эта стадия подразделяется на раннюю оральную (доамбивалентную) фазу, связанную непосредственно с материнской грудью (как парциальным объектом), и позднюю оральную (амбивалентную) фазу, связанную с образом "матери с грудью", то есть с целостным объектом, воспринимаемым как парциальный.

2-я стадия, стадия псевдонезависимости, представляет собой длительную промежуточную или переходную стадию, не имеющую специфического, естественного биологического объекта. Ребенок устанавливает более прочные отношения с внешними объектами, которые постепенно становятся все более дифференцированными, и организует свой внутренний мир с помощью внутренних репрезентантов объектов. Эту стадию характеризуют различение, принятие и отвержение. Весь объект воспринимается как телесные содержания, при этом "плохие" части объекта отторгаются. Именно поэтому, согласно Фэйрбейрну, данная стадия окрашена "экскреторными" установками, но не из-за либидинозного катексиса ануса или фекалий.

Фэйрбейрн обнаружил, что все его шизоидные пациенты на одной и той же стадии анализа проявляли паттерны основных психоневрозов в качестве средств защиты против угрозы потери Самости. Поэтому он считал, что психоневроз не следует рассматривать в качестве патологических образований, имеющих специфический источник в одной из фаз развития либидо. Вместо этого он рассматривал их как присущие переходной стадии способы интернализации и экстернализации, возникающие вследствие общих семейных паттернов. Эти способы позволяют ребенку регулировать или "обходиться" с принятым или отвергнутым объектом и отказываться от отношений первой, оральной, стадии в пользу отношений, основанных на дифференцированных объектах. Если же эти способы сохраняются в последующей жизни, они превращаются в патологические механизмы предотвращения регрессии к шизоидным и депрессивным состояниям и проявляются в фобическом, истерическом, обсессивном и паранойяльном поведении.

3-я стадия, стадия зрелой независимости, отражает достижение полной дифференциации Самости и объекта, а также отношений "брать и давать" с целостными объектами. Естественным биологическим объектом являются гениталии неинцестуозного партнера (таким образом, эта стадия соответствует классической концепции генитальности). Вместе с тем характерной особенностью этой стадии является установка шеринга и кооперации между равноценными индивидами, а биологический аспект является лишь частью целостных взаимоотношений.

К заслугам Фэйрбейрна следует отнести также введение в психоаналитическую теорию принципа объектных отношений, который, по мнению некоторых аналитиков, является более прогрессивным, нежели фрейдовская схема, основанная на представлениях прошлого столетия о свободных энергиях как силах, независимых от структуры. Концепции Фэйрбейрна возникли во многом под влиянием представлений Мелани Кляйн. Однако он разработал самостоятельную систему взглядов, значение которой все более подчеркивалось многими исследователями, в частности Кернбергом, Ринсли и др. , занимавшимися изучением и терапией психических расстройств, считавшихся прежде неподвластными психоанализу. Взгляды Фэйрбейрна были расширены и дополнены Гантрипом (1961), сумевшим с помощью клинических наблюдений подтвердить концепцию Фэйрбейрна и сделать ее необычайно емкое изложение более понятным.

Лит.: [197 , 198 , 381 , 397 , 398 , 494 , 724 ]

4 глобализация

экон. globalization
(один из наиболее модных концептов современного социального теоретизирования, обсуждение которого вышло далеко за пределы научного дискурса. Исторически данное понятие связано с понятием империализма (Дж.Э.Гобсон, В.И.Ленин), а также со многими теориями зависимости. Современные представления о глобализации во многом опираются на теорию миро-системы, разработанную И. Уоллерстайном)

5 зависть к пенису

Психическая установка, отражающая неудовлетворенность собственными гениталиями и исполненное раздражения, агрессивное и страстное желание иметь пенис. Имеет место также бессознательное желание кастрировать мужчину и завладеть его пенисом. В основе зависти к пенису лежит чувство неполноценности, недостаточности, проистекающая из многих источников нарциссическая чувствительность, а также стремление обладать более совершенным генитальным аппаратом и мужским потенциалом.

По мнению Фрейда, женственность зарождается на основе страха кастрации и эдипова конфликта. Зависть к пенису считалась ее первичным организатором и поэтому ей отводилась фундаментальная роль в формировании женской сексуальности. Фрейд считал, что зависть к пенису представляет собой желание воображаемого замещения пениса, отсутствующего у девочки по причине неправильного ее поведения (мастурбации) либо отвержения или злого умысла со стороны матери. Речь также идет о желании иметь отцовский пенис или родить от отца ребенка. Хорни придавала значение стремлению к большему уретральному, скопофилическому и онанистическому удовлетворению, возможность которого предоставляет пенис.

Однако современные психоаналитические разработки убедительно показывают, что нормальная женственность имеет собственную линию развития и не является дериватом первичного стремления к мужественности и зависти к пенису. Половая идентичность устанавливается в течение первого года жизни. Определение пола после рождения, ранние переживания удовлетворения, положительная идентификация с матерью, опекающая роль матери до и после фаллической фазы, познание, обучение, язык - все это важные факторы формирования удовлетворительной половой идентичности.

Ребенок обнаруживает половые различия в возрасте от 18 до 24 месяцев. В этот период зависть девочек к пенису часто является очень острой и явно выраженной, но она специфична для фаз развития и, как правило, преходяща. Зависть девочки смещается с отправной точки, и в результате другие части ее тела, она сама в целом или такие атрибуты, как интеллект или уровень достижений, обретают значение "иллюзорного фаллоса", опровергая тем самым отсутствие у нее пениса. Наблюдения показывают, что, хотя открытая зависть к пенису исчезает, аффекты и фантазии, активированные осознанием половых различий, часто оказывают важное организующее воздействие на дальнейшее развитие.

Устойчивая или интенсивная зависть к пенису свидетельствует о существовании других, накладывающихся на раннюю фазу осознания гениталий, проблем, которые могут мешать развитию зрелой женственности. Выраженность комплекса кастрации может быть детерминирована предшествовавшими проблемами ребенка, связанными с угрозой потери объекта или угрозой телесной интеграции. Утрата родителя, неадекватное отношение матери (особенно депрессия матери и отвержение с ее стороны), заболевания, порождающие острые нарушения чувства тела, врожденные дефекты, хирургическое вмешательство и т.д. могут быть ступенью к серьезным искажениям репрезентации себя и объектов, усиления комплекса кастрации и зависти к пенису.

Бессознательные дериваты, иногда буквально интерпретируемые как желание иметь мужской половой орган, имеют множественно детерминированное значение соответственно различным уровням развития. Согласно современным представлениям, зависть к пенису является скорее специфическим психическим продуктом, компромиссным образованием, которое во многом выражает критическое отношение. Центральный конфликт может включать идентичность, нарциссическую чувствительность, проблемы, связанные с агрессией, что порождает чувства ущербности, неадекватности, несостоятельности. Зависть к пенису, таким образом, является редукционистской метафорой общей зависти, конкретной и понятной, но вместе с тем упрощением основных проблем (Grossman & Stewart, 1976).

Осознание генитальных различий очень важно для формирования самооценки ребенка по мере его дифференциации от матери. Взаимно удовлетворяющие взаимоотношения матери и ребенка дают последнему чувство состоятельности, которое распространяется и на его гениталии. Если, однако, эти отношения не приносят удовольствия, девочка может не ценить себя или свои гениталии и возжелать пенис - замещающий объект, расцениваемый как приносящий большее удовлетворение. Позже зависть к пенису может отражать регрессивную попытку разрешения эдипова комплекса. Девочка может обесценить свои гениталии, идентифицируясь с матерью, низко оценивающей собственную женственность. Таким образом, на зависть к пенису влияет нарциссическая позиция ребенка и его отношения с обоими родителями. Она может также защищать против зависимости от мужчины, когда бессознательно желаемая близость влечет за собой боязнь поглощения и утраты чувства себя. Социокультурная переоценка мужчины часто служит маскировкой этих бессознательных детерминант.

6 характер

Устойчивое, структурированное функционирование индивида. В восприятии наблюдателя характер представляет собой привычный способ мышления индивида, его чувствования и поведения. В психодинамическом понимании характер определяется как привычный способ разрешения интрапсихических конфликтов. Характер является самостоятельным и независимым понятием, тем не менее можно провести различия с другими терминами, обозначающими наиболее общие аспекты личности, такими, как идентичность, Самость и Я.

7 широковещательное объектно-ориентированное сообщение о событии на подстанции

GOOSE
Generic Object Oriented Substation Event
(стандарт МЭК 61850-8-1)
Протокол передачи данных о событиях на подстанции.
Один из трех протоколов передачи данных, предлагаемых к использованию в МЭК 61850.
Фактически данный протокол служит для замены медных кабельных связей, предназначенных для передачи дискретных сигналов между устройствами.
[ Цифровые подстанции. Проблемы внедрения устройств РЗА ]

В стандарте определены два способа передачи данных напрямую между устройствами: GOOSE и GSSE. Это тоже пример наличия двух способов для реализации одной функции. GOOSE - более новый способ передачи сообщений, разработан специально для МЭК 61850. Способ передачи сообщений GSSE ранее присутствовал в стандарте UCA 2.0, являющимся одним из предшественников МЭК 61850. По сравнению с GSSE, GOOSE имеет более простой формат (Ethernet против стека OSI протоколов) и возможность передачи различных типов данных. Вероятно, способ GSSE включили в МЭК 61850 для того, чтобы производители, имеющие в своих устройствах протокол UCA 2.0, могли сразу декларировать соответствие МЭК 61850. В настоящее время все производители используют только GOOSE для передачи сообщений между устройствами.
Для выбора списка передаваемых данных в GOOSE, как и в отчѐтах, используются наборы данных. Однако тут требования уже другие. Время обработки GOOSE-сообщений должно быть минимальным, поэтому логично передавать наиболее простые типы данных. Обычно передаѐтся само значение сигнала и в некоторых случаях добавляется поле качества. Метка времени обычно включается в набор данных.
...Православная энциклопедия


  • Вам также будет интересно:

    Вертута из дрожжевого теста с брынзой
    Ветрута - традиционный молдавский пирог из вытяжного теста. Именно благодаря ему выпечка...
    Cонник косить, к чему снится косить во сне видеть
    Домашний сонник Коса, косить к чему снится Если сновидцу снится коса или ему приходится...
    Сонник: к чему снится коса
    приснилась коса (косить)Увиденная во сне коса, сигнализирует о возможном нарушении ваших...
    Хлеб ржаной половина покупать во сне
    Хлеб во сне является символом пищи для тела и ума. Видеть свежеиспеченный каравай – к...
    Суп-харчо - классический рецепт с тклапи, рисом и тертыми орехами
    Ароматный, сытный и наваристый суп харчо хорош для зимних обедов, когда за окном мороз и...