Сайт о холестерине. Болезни. Атеросклероз. Ожирение. Препараты. Питание

Механизмы апоптоза. Морфологические проявления апоптоза Что происходит с клеткой при апоптозе

Существует множество определений понятия "апоптоз".
- явление программируемой клеточной смерти, сопровождаемой набором характерных цитологических признаков (маркеров апоптоза) и молекулярных процессов, имеющих различия у одноклеточных и многоклеточных организмов (т.е. изменений в строении и функционировании клетки, характерных для апоптоза).
- форма гибели клетки, проявляющаяся в уменьшении ее размера, конденсации (уплотнении) и фрагментации хроматина, уплотнении наружной и цитоплазматической мембран без выхода содержимого клетки в окружающую среду.
Суть апоптоза заключается в том, что это программируемая клеточная гибель, т.е. существуют определенные механизмы, в результате реализации которых клетка сама завершает свое существование.
В многоклеточном организме апоптозом гибнут клетки в процессе эмбриогенеза, Т-клетки в процессе дифференцировки в тимусе, клетки, зараженные вирусами, измененные клетки (при недостаточной интенсивности апоптотических процессов развиваются онкологические заболевания) и мн. др.Основное биологическое назначение апоптоза состоит в том, чтобы в процессе эмбрионального морфонегеза создавать органы и ткани с эволюционно закрепленными конфигурациями и размерами и затем поддерживать эти параметры с допустимыми допусками в течение жизни. Важнейшим проявлением этой функции апоптоза после окончания развития человека и других млекопитающих является его участие в процессе физиологической регенерации (обновления) клеток разных тканей и органов и поддержании клеточного гомеостаза. Регенерации в разной степени выраженности на протяжении всей жизни подвержены практически все клетки нашего организма. Особенно интенсивно клеточное обновление протекает в клетках эпителия, соприкасающихся с внешней средой, кожи, желудочно-кишечного тракта, мочеполовой и легочной систем, а также в клетках крови, иммунной системы.
Важна роль и в процессах отторжения чужеродных органов и тканей при их трансплантации.
Другой важнейшей функцией апоптоза является контроль за внутренней средой клетки, в том числе клеточного ядра с его содержимым. Правда, сейчас показано, что апоптоз может протекать и в клетках, лишенных ядра. При возникновении в клетке нарушений, превышающие допустимые пределы, клетка подвергается самоуничтожению. Апоптоз возникает при действии различных повреждающих факторов, которые способны вызвать некроз, но действующих в небольших дозах, например, при действии высокой температуры, ионизирующего излучения, противоопухолевых препаратов.
Апоптоз принимает активное участие в ряде физиологических и патологических процессов. Например, при гормон-зависимой инволюции органов у взрослых, в частности, отторжение эндометрия во время менструального цикла, атрезии (заращении) фолликулов в яичниках в менопаузе и регрессии (обратном развитии) молочной железы после прекращения лактации.
Велика роль апоптоза и при патологической атрофии гормон-зависимых органов, например, атрофии предстательной железы после кастрации и истощении лимфоцитов в тимусе при терапии глюкокортикоидами. Или патологической атрофии паренхиматозных органов после обтурации (закупорки) выводных протоков, что наблюдается в поджелудочной и слюнных железах, почках. Гибель клеток в процессе атрофии наблюдается и в коре надпочечников при воздействии глюкокортикоидов или при атрофии эндокрин-зависимых тканей.
Во многих случаях острого или хронического ишемического либо токсического воздействия гибель клеток происходит через апоптоз. Такая картина наблюдается при инсульте, инфаркте не только миокарда, но и в почках, при диабете, отдельных формах нефрита, нейродегенеративных заболеваниях, таких как болезнь Альцгеймера и Паркинсона. В патогенезе токсических повреждений печени, поджелудочной железы и почек активация апоптоза также имеет важное значение.

Формы клеточной гибели, их различия


Существует две формы гибели клетки - некроз и апоптоз.
Некроз - это патологический процесс, выражающийся в местной гибели ткани в живом организме в результате какого-либо экзо- (внешнего) или эндогенного (внутреннего) ее повреждения. Некроз проявляется в набухании, денатурации и коагуляции (слипании) цитоплазматических белков, разрушении клеточных органелл и, наконец, всей клетки.
Главное отличие некроза и апоптоза состоит в том, что апоптоз - это программируемая гибель клетки, а некроз - это патологический процесс, запускающийся в ответ на какое-либо повреждающее воздействие (инфекция, химическое воздействие, облучение, недостаточное кровоснабжение и т.д.).

В процессе апоптоза в клетке задействованы сложные молекулярные каскады, в результате реализации которых происходит сморщивание цитоплазматической мембраны, уменьшение объёма клетки, разрывы нитей ядерной ДНК, конденсация хроматина по периферии ядра, последующий распад ядра на части, фрагментация клеток на везикулы (пузырьки) с внутриклеточным содержимым - апоптотические тельца, которые захватываются соседними клетками, могут и фагоцитами, как в случае некроза. Выброса клеточного содержимого не происходит, воспаления не возникает.


При некрозе, наоборот, происходит выход лизосомальных ферментов из лизосом, которые и переваривают содержимое клетки, клетка набухает и лопается. Содержимое клетки выбрасывается во внеклеточную среду, где поглощается фагоцитами, развивается воспаление.
Апоптоз- это физиологический процесс, некроз- патологический.
Существуют и другие формы программируемой гибели, например, аутофагия . Процесс аутофагии заключается в том, что органеллы соединяются с лизосомами, где перевариваются лизосомальными ферментами. Затем остатки клетки поглощают макрофаги .

а) - Кинетическая модель баланса апоптоза и аутофагии. Одно из летальных воздействий активирует в клетке программу и клетка "решает умереть". Если достаточно апоптотических эффекторов (молекул, задействованных в процессе апоптоза), то апоптоз является единственным ответом большинства клеток на летальное воздействие. Подавление апоптотических эффекторов запускает альтернативный путь- аутофагию.
b) - Ингибиторная модель. Когда летальное воздействие активирует BAX/BAK- зависимый митохондриальный внемембранный путь (BAX/BAK-dependent mitochondrial outer-membrane permeabilization pathway) запускается апоптоз. BAX/BAK, так же как и каспазы, является активным ингибитором BCL2/BCL-XL, облегчающего аутофагию. Активный апоптоз подавляет аутофагию.

Механизмы апоптоза

Механизмы апоптоза сложны и многообразны, представляют собой сложнейший молекулярный каскад, изучением которого занимаются многие и многие лаборатории по всему миру. Несомненная важность этих исследований в аспекте онкологии и геронтологии доказана успехами терапии онкологических заболеваний индукторами апоптоза раковых клеток.
Так каковы же механизмы.

Поговорим об этом по-подробнее

Первый этап - смертельный приказ

С чего же начинается этот сложный процесс? С того, что клетка получает "приказ умереть", ее гибель необходима для дальнейшей жизнедеятельности организма. Это происходит с помощью сигналов из внеклеточной среды, которые клетка воспринимает с помощью своего рецепторного аппарата. Иногда сигналом для начала апоптоза может быть и отсутствие необходимого сигнала.
В результате контакта сигнальных молекул с наружной частью белка-рецептора этот рецептор претерпевает структурные изменения. Структурная перестройка захватывает и внутриклеточную часть молекулы рецептора. Она может либо обладать определенной ферментативной активностью сама, либо быть тесно связана с некоторыми клеточными ферментами. Изменение активности рецепторной молекулы приводит к активации фермента.
Часто речь идет об изменении концентрации ионов кальция, а также некоторых относительно мелких фосфорсодержащих органических соединений, относящихся к классу нуклеотидов.
Активные соединения появляются и в результате гидролиза определенных липидов клеточной мембраны. В свою очередь, все это ведет к присоединению или отсоединению остатков фосфата от молекул белковых регуляторов (фосфорилирование), способных влиять на генетический аппарат клетки.
Фосфорилирование и дефосфорилирование (отщепление остатка фосфорной кислоты), а также некоторые другие биохимические модификации меняют активность этих регуляторов.

Рецепторы, воспринимающие "летальный сигнал"

Известны два структурно гомологичных рецептора TNF , р55 и р75 (TNF-RI и TNF-RII , соответственно), относящиеся к трансмембранным белкам I типа. Кроме этого задействованы "рецепторы смерти" CD95 . Рецепторы CD95 и рецепторы TNF принадлежат к растущему суперсемейству рецепторов, имеющих гомологию в экстраклеточных доменах. Семейство включает в себя также рецептор фактора роста нервов, В-клеточный антиген CD40 , маркер активации Т-лимфоцитов CD27 и некоторые гомологичные белки млекопитающих и вирусов.
CD95 и TNF-R1 имеют дополнительную гомологичную последовательность во внутриклеточной части молекул. Этот трансдукции цитотоксического (повреждающего клетку) сигнала. Цитоплазматический С-конец CD95 содержит также "домен спасения" , удаление которого усиливает цитотоксическую активность рецептора.


TNF и лиганд CD95 (CD95-L) являются трансмембранными белками второго типа с внеклеточным С-концевым, внутриклеточным N-концевым и одним трансмембранным элементами, но они могут функционировать и в растворимой, "слущенной" с мембраны форме. И CD95-L, и TNF связываются с соответствующим рецепторами в виде тримера, "сшивают" 3 молекулы рецептора, что активирует его для передачи проапоптотического сигнала.
Интенсивные исследования сигнальных механизмов апоптоза, индуцированного антителами к CD95/CD95-L и TNF, привели к значительному прогрессу в двух направлениях - идентификация белков, взаимодействующих с CD95 и TNF-R1, и выяснение участия в процессе вторичного мессенджера церамида.
"Домен смерти" TNF-R1 взаимодействует также с серин/треониновой протеинкиназой и фосфорилируется этим ферментом. 30 С-концевых аминокислотных остатков ингибируют связывание рецептора с протеинкиназой. Роль этих событий в передаче цитотоксического сигнала неясна. Недавно описана тирозиновая фосфатаза, FAP-1 , взаимодействующая с 15 С-концевыми аминокислотами CD95, "доменом спасения". Гиперэкспрессия FAP-1 подавляет апоптоз, опосредованный CD95.
Описанные белки участвуют, по-видимому, в начальных этапах передачи сигнала. Другая группа данных свидетельствует о том, что и CD95-L или антитела к CD95, и TNF активируют сфингомиелиновый путь передачи.
Поздние этапы клеточной гибели, индуцированной через CD95 и TNF-R1, таковы же, как при классическом апоптозе. Гибель клеток может быть предотвращена crmA , что указывает на участие ICE-подобных протеаз. Bcl-2 подавляет апоптоз, индуцированный через CD95 и TNF-R1, по крайней мере на некоторых клеточных линиях.

Участие FAS (CD95)



Этот путь передачи летального сигнала схематически можно изобразить следующим образом: индукторы - рецепторы - адаптеры -каспазы первого эшелона -регуляторы -каспазы второго эшелона. Так, рецептор, обозначаемый Fas, взаимодействуя с соответствующим лигандом (лигандом FasL), трансмембранным белком Т-киллера, активируется и запускает программу смерти клетки, инфицированной вирусом. Тем же путем при взаимодействии с лигандом FasL на поверхности Тh1-лимфоцитов или с антителом к Fas-рецептору погибают ставшие ненужными выздоровевшему организму В-лимфоциты, продуценты антител, несущие Fas-рецептор. FasL– лиганд, относящийся к многочисленному семейству фактора некроза опухолей TNF. Это семейство гомотримерных лигандов (т.е. биологически активных веществ (белков), состоящих из 3 одинаковых доменов (частей), кроме FasL и TNFa , включает TNFb (лимфотоксин).
Fas – член семейства рецепторов TNF. Как говорилось выше, все они представлены трансмембранными белками, которые внеклеточными участками взаимодействуют с тримерами лигандов-индукторов. Взаимодействие рецептора и лиганда приводит к образованию кластеров рецепторных молекул и связыванию их внутриклеточных участков с адаптерами. Адаптер, связавшись с рецептором, вступает во взаимодействие с эффекторами, пока еще неактивными предшественниками протеаз из семейства каспаз первого эшелона (инициирующих каспаз).
Взаимодействие адаптера с рецептором и эффектором осуществляется через гомофильные белок-белковые взаимодействия небольших доменов: DD (death domain – домен смерти), DED (death-effector domain – домен эффектора смерти), CARD (– домен активации и рекрутирования каспазы). Все они имеют сходную структуру, содержат по шесть a-спиральных участков. Домены DD(домен смерти) участвуют во взаимодействии рецептора Fas c адаптером FADD (Fas-associated DD-protein). Домены DED участвуют во взаимодействии адаптера FADD с прокаспазами 8 и 10.

Наиболее подробно охарактеризована прокаспаза-8, рекрутируемая рецептором Fas через адаптeр FADD. Образуются агрегаты FasL – Fas – FADD – прокаспаза-8. Подобные агрегаты, в которых происходит активация каспаз, названы апоптосомами , апоптозными шаперонами , или сигнальными комплексами, индуцирующими смерть .
Прокаспазы обладают незначительной протеолитической активностью, составляющей 1–2% активности зрелой каспазы. Будучи в мономерной форме, прокаспазы, концентрация которых в клетке ничтожна, находятся в латентном состоянии. Предполагается, что пространственное сближение молекул прокaспаз при их агрегации ведет к образованию активных каспаз через механизм протеолитического само- и перекрестного расщепления (ауто- или транс-процессинга)]. В результате от прокаспазы (молекулярная масса 30–50 кДа) отделяется регуляторный N-концевой домен (продомен), а оставшаяся часть молекулы разделяется на большую (~20 кДа) и малую (~10 кДа) субъединицы (рис. 3). Затем происходит ассоциация большой и малой субъединиц. Два гетеродимера образуют тетрамер с двумя каталитическими участками, действующими независимо друг от друга. Таким образом прокаспаза-8 активируется и высвобождается в цитоплазму в виде каспазы-8. Существуют другие пути активации каспазы-8 – с участием рецепторов TNFR1 и DR3.
На этапе активации каспаз первого эшелона жизнь клетки еще можно сохранить. Существуют регуляторы, которые блокируют или, напротив, усиливают разрушительное действие каспаз первого эшелона. К ним относятся белки Bcl-2 (ингибиторы апоптоза: A1, Bcl-2, Bcl-W, Bcl-XL, Brag-1, Mcl-1 и NR13) и Bax (промоторы апоптоза: Bad, Bak, Bax, Bcl-XS, Bid, Bik, Bim, Hrk, Mtd). Эти белки эволюционно консервативны: гомолог Bcl-2 обнаружен даже у губок, у которых апоптоз необходим для морфогенеза.
Каспаза-8 активирует каспазу второго эшелона (эффекторную каспазу): путем протеолиза из прокаспазы-3 образуется каспаза-3, после чего процесс, запущенный программой смерти, оказывается необратимым.
Каспаза-3 способна в дальнейшем к самостоятельной активации (автокатализу или автопроцессингу), активирует ряд других протеаз семейства каспаз, активирует фактор фрагментации ДНК, ведет к необратимому распаду ДНК на нуклеосомальные фрагменты. Так запускается каскад протеолитических ферментов,осуществляющих апоптоз.

Каспазы

Каспазы-семейство эволюционно консервативных сериновых протеаз, которые специфически расщепляют белки после остатков аспарагиновой кислоты.
На основе структурной гомологии каспазы подразделяются на подсемейства
- каспазы-1 (каспазы 1, 4, 5),
- каспазы-2 (каспаза-2) и
- каспазы-3 (каспазы 3, 6–10) .
Цистеиновые протеазы, по-видимому, участвуют также в программированной клеточной гибели у растений. Однако апоптоз возможен и без участия каспаз: сверхсинтез белков-промоторов апоптоза BAX и BAK индуцирует гибель в присутствии ингибиторов каспаз.

В результате действия каспаз происходит:
1. Активация прокаспаз с образованием каспаз;

2. Расщепление антиапоптозных белков семейства Bcl-2. Подвергается протеолизу ингибитор ДНКазы, ответственный за фрагментацию ДНК. В нормальных клетках апоптозная ДНКаза CAD (caspase-activated DNase) образует неактивный комплекс с ингибитором CAD, обозначаемым ICAD или. При апоптозе ингибитор ICAD с участием каспаз 3 или 7 инактивируется, и свободная CAD, вызывая межнуклеосомальные разрывы хроматина, ведет к образованию фрагментов ДНК с молекулярной массой, кратной молекулярной массе ДНК в нуклеосомных частицах – 180-200 пар нуклеотидов.
Апоптоз возможен и без фрагментации ДНК. Обнаружен ядерный белок Acinus (apoptotic chromatin condensation inducer in the nucleus), из которого при комбинированном действии каспазы-3 (протеолиз при Asp 1093) и неидентифицированной протеазы (протеолиз при Ser 987) образуется фрагмент Ser 987 – Asp 1093. Этот фрагмент в присутствии дополнительных неядерных факторов вызывает апоптотическую конденсацию хроматина и фрагментацию ядра (кариорексис) без фрагментации ДНК;

3. Гидролиз белков ламинов, армирующих (укрепляющих) ядерную мембрану. Это ведет к конденсации хроматина;

4. Разрушение белков, участвующих в регуляции цитоскелета;

5. Инактивация и нарушение регуляции белков, участвующих в репарации ДНК, сплайсинге мРНК, репликации ДНК.
Мишенью каспаз является поли(ADP-рибозо)полимераза (PARP). Этот фермент участвует в репарации ДНК, катализируя поли(ADP-рибозилирование) белков, связанных с ДНК. Донором ADP-рибозы является NAD+. Активность PARP возрастает в 500 раз и более при связывании с участками разрыва ДНК. Апоптотическая гибель клетки сопровождается расщеплением PARP каспазами. Чрезмерная активация PARP при массированных разрывах ДНК, сильно снижая содержание внутриклеточного NAD+, ведет к подавлению гликолиза и митохондриального дыхания и вызывает гибель клетки по варианту некроза.

Митохондриальный путь


В клетках, подвергшихся воздействию индуктора апоптоза, резко снижается мембранный потенциал (Dy) митохондрий. Падение Dy обусловлено увеличением проницаемости внутренней мембраны митохондрий вследствие образования гигантских пор. Разнообразны факторы, вызывающие раскрытие пор. К ним относятся истощение клеток восстановленным глутатионом, NAD(P)H, ATP и ADP, образование активных форм кислорода, разобщение окислительного фосфорилирования протонофорными соединениями, увеличение содержания Ca2+ в цитоплазме. Образование пор в митохондриях можно вызвать церамидом, NO, каспазами, амфипатическими пептидами, жирными кислотами. Поры имеют диаметр 2,9 нм, позволяющий пересекать мембрану веществам с молекулярной массой 1,5 кДа и ниже. Следствием раскрытия поры является набухание митохондриального матрикса, разрыв наружной мембраны митохондрий и высвобождение растворимых белков межмембранного объема. Среди этих белков – ряд апоптогенных факторов: цитохром С, прокаспазы 2, 3 и 9 , белок AIF (apoptosis inducing factor), представляющий собой флавопротеин с молекулярной массой 57 кДа.
Образование гигантских пор не является единственным механизмом выхода межмембранных белков митохондрий в цитоплазму. Предполагается, что разрыв наружной мембраны митохондрий может быть вызван гиперполяризацией (переход заряда в отрицательную область) внутренней мембраны. Возможен и альтернативный механизм, без разрыва мембраны, – раскрытие гигантского белкового канала в самой наружной мембране, способного пропускать цитохром С и другие белки из межмембранного пространства.
Высвобождаемый из митохондрий цитохром с вместе с цитоплазматическим фактором APAF-1 (apoptosis protease activating factor-1) участвует в активации каспазы-9 .
APAF-1 – белок с молекулярной массой 130 кДа, содержащий CARD-домен (caspase activation and recruitment domain) образует комплекс с прокаспазой-9 в присутствии цитохрома с и dATP или АТР. Из этих субъединиц собираются жесткие, симметричные структуры, наподобие веера или пропеллера.APAF-1 играет роль арматуры, на которой происходит аутокаталитический процессинг каспазы-9 . Предполагается, что в результате зависимого от гидролиза dATP (или АТР) конформационного изменения APAF-1 приобретает способность связывать цитохром С. Связав цитохром с, APAF-1 претерпевает дальнейшее конформационное изменение, способствующее его олигомеризации и открывающее доступ CARD-домена APAF-1 для прокаспазы-9, которая тоже содержит CARD-домен. Так образуется конструкция, называемая тоже апоптосомой, с молекулярной массой > 1,3 млн дальтон, в составе которой – не менее 8 субъединиц APAF-1 . Благодаря гомофильному CARD-CARD-взаимодействию с APAF-1 в эквимолярном соотношении связывается прокаспаза-9, а затем прокаспаза-9 связывает прокаспазу-3. Пространственное сближение молекул прокаспазы-9 на мультимерной арматуре из APAF-1-цитохром-с-комплексов, по-видимому, приводит к межмолекулярному протеолитическому процессингу (модификации) прокаспазы-9 с образованием активной каспазы-9. Зрелая каспаза-9 затем расщепляет и активирует прокаспазу-3.
Флавопротеин AIF, будучи добавленным к изолированным ядрам из клеток HeLa, вызывает конденсацию хроматина и фрагментацию ДНК, а при добавлении к изолированным митохондриям печени крыс – высвобождение цитохрома с и каспазы- AIF является митохондриальным эффектором гибели клеток у животных, действующим независимо от каспаз.
Кроме рассмотренных компонентов, при нарушении наружной мембраны митохондрий из межмембранного объема выделяется термолабильный фактор, вызывающий необратимое превращение ксантиндегидрогеназы в ксантиноксидазу. Ксантиндегидрогеназа катализирует зависимое от NAD+ окисление ксантина до гипоксантина и последующее окисление гипоксантина до мочевой кислоты. Ксантиноксидаза катализирует те же реакции, но не с NAD+, а с О2 в качестве акцептора электронов. При этом образуются О2A, Н2О2, а из них – и другие активные формы кислорода (АФК), которые разрушают митохондрии и являются мощными индукторами апоптоза. Механизмы образования АФК, конечно, не ограничиваются ксантиноксидазной реакцией. Главным источником АФК в клетках являются митохондрии. Резкое увеличение АФК происходит при возрастании мембранного потенциала в митохондриях, когда снижено потребление ATP и скорость дыхания лимитируется ADP . Цитоплазматическая мембрана макрофагов и нейтрофилов содержит О2A – генерирующую NADPH-оксидазу.
В зависимости от пути, по которому осуществляется активация каспаз, различают разные типы клеток. Клетки типа I (в частности, линия лимфобластоидных В-клеток SKW и T-клетки линии Н9) подвергаются ПКС по пути, зависимому от апоптозных рецепторов плазматической мембраны без участия митохондриальных белков. Клетки типа II (например, линии Т-клеток Jurkat и СЕМ) погибают по пути апоптоза, зависимому от митохондриального цитохрома С. Гибель клеток, вызванная химиотерапевтическими соединениями, УФ- или і-облучением, по-видимому, напрямую связана с апоптозной функцией митохондрий.
Некоторые клетки, например, клетки эмбриональной нервной системы, включают механизмы апоптоза, если они испытывают дефицит апоптозподавляющих сигналов (называемых также факторами выживания) от других клеток. Физиологический смысл процесса – в элиминации избыточных нервных клеток, конкурирующих за ограниченный фонд факторов выживания. Эпителиальные клетки при отделении от внеклеточного матрикса, вырабатывающего факторы выживания, тоже обречены на смерть. Факторы выживания связываются соответствующими цитоплазматическими рецепторами, активируя синтез подавляющих апоптоз агентов и блокируя стимуляторы апоптоза. Некоторые вещества (например, стероидные гормоны) оказывают дифференцированный эффект на различные типы клеток – предотвращают апоптоз одних типов клеток и индуцируют его у других. Так, при наличии во внеклеточном матриксе факторов роста PDGF (platelet-derived growth factor – тромбоцитарный фактор роста) или NGF (nerve growth factor – фактор роста нервов) и цитокина интерлейкина-3 (IL-3) проапоптозный белок Bad не активен.Факторы роста, связавшись со своим рецептором на плазматической мембране, вызывают активацию цитозольной протеинкиназы В, и катализирующей фосфорилирование Bad по Ser-136. IL-3 тоже связывается со своим рецептором на плазматической мембране и активирует митохондриальную cAMP-зависимую протеинкиназу А, катализирующую фосфорилирование Bad по Ser-112. Будучи фосфорилированным по обоим остаткам серина, Bad образует комплекс с белком 14-3-3, располагающийся в цитоплазме. Дефицит факторов роста и IL-3 воспринимается клеткой как сигнал к апоптозу: происходит дефосфорилирование Bad, его внедрение в наружную мембрану митохондрий, выход цитохрома с из митохондрий и последующая активация каспазы-9 через APAF-1-зависимый механизм.

Другие пути

В ряде случаев апоптоз реализуется в результате комбинированного действия двух путей – с участием и рецепторов плазматической мембраны, и митохондриального цитохрома C. Так, повреждение ДНК ведет к накоплению в клетке белкового продукта гена р53, который может останавливать деление клеток и/или индуцировать апоптоз.

Белок р53 является фактором транскрипции, регулирующим активность ряда генов. Предполагается, что ответная реакция на образование белка р53 зависит от степени нарушения клеточного генома. При умеренном нарушении генома происходит остановка клеточного деления, осуществляется репарация ДНК, и клетка продолжает свое существование. При чрезмерном нарушении генома, когда ДНК уже не поддается репарации, включаются рецепторный и цитохром С-зависимый апоптозные каскады активации каспаз.

Также Существует путь передачи летального сигнала с участием эндоплазматического ретикулума (ЭР) . В ЭР локализована прокаспаза-12. Нарушение внутриклеточного Ca2+-гомеостаза добавкой тапсигаргина или Ca2+-ионофорного антибиотика А23187 ведет к апоптозу клеток, вызванному превращением прокаспазы-12 в каспазу-12. ЭР-зависимый апоптоз связан с болезнью Альцгеймера.

Цитотоксические лимфоциты, Т-киллеры, могут вызывать апоптоз у инфицированных клеток с помощью белка перфорина. Полимеризуясь, перфорин образует в цитоплазматической мембране клетки-мишени трансмембранные каналы, по которым внутрь клетки поступают TNFb , гранзимы (фрагментины) – смесь сериновых протеаз. Существенным компонентом этой смеси является гранзим В – протеолитический фермент, превращающий прокаспазу-3 в активную каспазу-3.

Взаимодействие клеток с внеклеточным матриксом осуществляется с помощью интегринов. Интегрины – большое семейство гетеродимерных мембранных белков, которые участвуют в адгезии клеток, связывая внутриклеточный цитоскелет с лигандами внеклеточного матрикса. Нарушение адгезии клеток индуцирует апоптоз.

Особую форму апоптоза претерпевают эритроциты млекопитающих. Биогенез эритроцитов из плюрипотентной в костном мозге включает ряд промежуточных этапов. На этапе эритробласта ядро изгоняется (выталкивается) из клетки и пожирается макрофагом. Альтернативный вариант: кариорексис (деструкция ядра) с образованием телец Жолли (остатки хроматина) и их последующий распад и лизис внутри клетки. Безъядерная клетка, называемая ретикулоцитом, в дальнейшем теряет митохондрии и рибосомы и превращается в эритроцит. Потерю ядра эритробластом можно рассматривать как особую форму ядерного апоптоза. Выяснение его механизма позволило бы применить его для обезвреживания опухолевых клеток.

Второй этап- активация генов...а затем конец

На втором этапе запрограммированной смерти клеток внутриклеточные регуляторы, получив важные инструкции, вносят поправки в работу отдельных генов. Работа эта, как известно, заключается в образовании РНК, а затем и белков. Таким образом, в результате срабатывания генетической программы, первоначально запущенной сигналом с рецептора, происходит изменение набора внутриклеточных РНК и белков. В конечном счете появляются или активируются ферменты - протеазы и нуклеазы.
Ферменты расщепляют содержимое клетки, которое затем поглощается фагоцитами.

Апоптоз и старение

Известный американский ученый Л.Хейфлик в Медицинском центре детской больницы Северной Каролины впервые доказал, что естественная продолжительность жизни человека обусловлена числом митозов , которое могут совершить клетки данного организма. Он брал кусочки кожи от эмбриона, новорожденного и взрослого человека, разбивал их на отдельные клетки и культивировал в специальной питательной среде. Оказалось, что клетки эмбриона могут совершить около 50 делений, а затем в них наблюдаются все признаки апоптотической смерти. У взрослого человека клетки могли совершить уже не 50 а гораздо меньше делений, в зависимости от возраста обследуемого пациента. Впоследствии было показано,что механизм старческого апоптоза запускается и находиться в ядре.
В настоящее время для объяснения молекулярно-генетических механизмов старения организма предложено три гипотезы.

1. Первая гипотеза особенно отчетливо развита в трудах профессора Ж. Медведева, а также Л. Орджелом из Института им. Солка в США. Эти исследователи считают, что старение это процесс накопления ошибок в процессах транскрипции и трансляции и возникновении ферментов с дефектным функционированием. При этом механизмы репарации не могут справится со все возрастающим количеством дефектов.

2. Согласно второй гипотезе, предложенной также Ж.Медведевым 0,4% информации содержащейся в ДНК клеточного ядра, используется клеткой постоянно на протяжении ее жизни. Кроме того, многие гены в молекуле ДНК повторяются, делая генетическую информацию в высокой степени избыточной. Ж. Медведев предположил, что повторяющиеся последовательности обычно репрессированы, но в случае значительного повреждения активного гена он заменяется одним из идентичных резервных генов. Избыточность ДНК может, следовательно, служить гарантией против внутренне присущей подверженности системы случайным молекулярным повреждениям. Однако постепенно весь резерв генов будет исчерпан и тогда начинают возникать патофизиологические изменения, которые приведут к гибели клетки. Таким образом чем больше избыточной ДНК, тем больше продолжительность жизни данного вида.

3. Третья гипотеза постулирует, что возрастные изменения представляют собой продолжение нормальных генетических сигналов, регулирующих развитие животного от момента его зачатия до полового созревания. Быть может даже есть "гены старения" которые замедляют или даже закрывают биохимические пути один за другим и ведут к предсказуемым возрастным изменениям. При этом снижаются функциональные возможности клеток. Старение организма - это по существу старение и апоптоз ключевых клеток, гибель которых способна повлиять на физиологию всего организма.

В процессе старения происходит постоянное уменьшение числа неделящихся клеток, например нейронов. Согласно одной из теорий старения, в организме происходит накопление "поломок" - поломки ДНК, накопление токсических продуктов и т.д. В результате этого клетки гибнут.
В 1982 году С.Р. Уманский предложил гипотезу, согласно которой старение может быть следствием плейотропного эффекта группы генов, несущих информацию о программированной гибели клетки (апоптозе). С одной стороны, эта программа необходима для развития и функционирования многоклеточного организма. Вместе с тем она делает неизбежной гибель клеток у взрослого организма. В таком случае старение является следствием постепенной убыли функционально активных клеток (Уманский, 1982).
До сих пор идут дискуссии о роли апоптоза в процессе старения. Часть исследователей во главе с академиком Скулачевым являются сторонниками теории клеточного апоптоза. Старение, с точки зрения Скулачева, – результат того, что в организме гибнет больше клеток, чем рождается, а отмирающие функциональные клетки заменяются соединительной тканью. Суть его работы – поиск методов противодействия разрушению клеточных структур свободными радикалами. По мнению ученого, старость – это болезнь, которую можно и нужно лечить, программу старения организма можно вывести из строя и тем самым выключить механизм, сокращающий нашу жизнь.
Некоторые ученые, например, Бойко, критикуют теорию Скулачева . В частности сам Бойко является автором .

Исследования и перспективы

Как упоминалось выше, сейчас по всему миру идут интенсивные исследования апоптоза.В основном это связано с онкологией- индукция апоптоза раковых клеток. Но этим все не ограничивается. В настоящее время идет разработка методов подавления возрастзависимого апоптоза в постмитотических и слабопролиферирующих тканях.
На первом месте среди причин смерти в большинстве стран стоят сердечно-сосудистые заболевания. Практически все пожилые люди страдают ими. Сердечная недостаточность, являющаяся конечным этапом сердечно-сосудистых заболеваний, приводит к недостаточному кровоснабжению органов, патологическим изменениям в них, т.е. в конечном итоге- к ускорению процесса износа организма- к ускорению процесса старения. При ишемии миокарда и его последующей реперфузии кардиомиоциты гибнут апоптозом. Китайские ученые Lv X, Wan J, Yang J, Cheng H, Li Y, Ao Y, Peng R провели исследование, в результате которого было определено, что селективные ингибиторы цитохром P450-омега гидроксилазы, которая индуцирует апоптоз кардиомиоцитов, снижают гибель кардиомиоцитов после ишемии и последующей реперфузии. Подобные исследования были проведены в отношении DIDS (4,4"-диизотиоцианостильбен-2,2"-дисульфоновая кислота), который снижает Staurosporine-индуцируемый апоптоз кардиомиоцитов, проходящий через PI3K/Akt- сигнальный путь апоптоза, с помощью активации NO-синтазы и подавления транслокации BAX.
Также проводились исследования на клетках эндотелия (эндотелий- выстилка сосудов) в условиях гипоксии и гиперхолестеринемии (повышенного содержания холестерина в крови), нейронах , хондроцитах и т.д. Т.е. в условиях, близких к возрастным изменениям в человеческом организме- ишемическая болезнь сердца, заболевания нервной системы и опорно- двигательного аппарата. Необходимо расширить изучение этой проблемы, перейти от экспериментов на животных к исследованиям на людях, т.к. перспективы этого направления исследований огромны- это возможность продлить жизнь, продлить активные годы, улучшить качество жизни.

Другой задачей для ученых должно стать исследование возможности индукции апоптоза нерепарирующихся клеток на ранних стадиях развития совместно с компенсаторной пролиферацией для замедления последующего старения тканей. (Москалев, 2007)

Необходимо переходить от дрозофил к людям, от изучения механизмов к практическим разработкам в целях борьбы со старением.

органов и систем организма

1. Определение понятия «апоптоз». Отличительные признаки апоптоза

«Апоптоз (от греческого – apo – «отделение» и ptosis – «падение») – это запрограммированный процесс уничтожения клетки, вызванный внутренними (внутриклеточными) или внешними (внеклеточными) как физиологическими, так и патологическими факторами, активирующими генетическую программу гибели клетки и ее удаление из ткани»

Разбирая это определение, можно сделать несколько выводов:

Во-первых, процесс гибели клетки запрограммирован в ее генетическом аппарате. Иначе говоря, клетка при рождении уже несет в себе механизмы своей гибели, то есть в геноме клетки содержатся гены, активация которых запускает механизм ее гибели;

Во-вторых, апоптоз может инициироваться как при протекании нормальных физиологических процессов, так и при развитии определенной патологии;

В-третьих, механизм клеточной гибели может запускаться как факторами, образующимися в самой клетке (то есть, внутриклеточными факторами), так и сигналами, переданными клетке от других клеток.

Ученые, присвоившие феномену программированной клеточной гибели термин «апоптоз», имели в виду некий художественный образ: осеннее опадание листвы. Именно так, обреченно и спокойно деревья осенью теряют свою листву. К слову сказать, и действительно, отделение черенка листа от древесной ветки происходит благодаря апоптозу слоя растительных клеток. Так невольно художественный образ совпал с существом физиологического процесса.


В настоящее время биологи и патологи выделяют два вида клеточной гибели: некроз и апоптоз. Для того чтобы последовательно и внимательно разобраться с механизмами апоптоза, нам необходимо хотя бы вкратце описать морфологические и биохимические различия этих двух процессов.

Самым ранним признаком апоптоза, выявляемом на электронно-микроскопическом уровне, являются резко очерченные уплотнения ядерного хроматина в виде гомогенной массы. Кроме того, наблюдается некоторая конденсация (уплотнение) цитоплазмы. Затем ядро и цитоплазма распадаются на фрагменты, причем цитоплазматические фрагменты разделяются цитоплазматической мембраной, то есть сохранность мембраны в данном случае является одним из признаков апоптоза.

В результате апоптоза клетка превращается в совокупность окруженных мембраной апоптозных телец, в которых плотно упакованные органеллы могут выглядеть интактными. В некоторых таких тельцах нет ядерного компонента, а в других – есть (иногда даже несколько), причем хроматин всегда очень плотный, резко очерчен и сконденсирован у ядерной мембраны.

Апоптозные тельца быстро поглощаются соседними клетками, где утилизируются с помощью лизосом. Окружающие клетки при этом сближаются, так что изменений цитоархитектоники тканей не происходит. Также полностью отсутствуют признаки воспаления. Некоторые апоптозные тельца (например, в поверхностном эпителии) слущиваются.

В культуре тканей было установлено, что процесс конденсации цитоплазмы и ее распада на апоптозные тельца происходит в течение нескольких минут. В организме процесс апоптоза также происходит достаточно быстро: фагоцитоз и утилизация апоптозных телец протекают в течение 15 – 120 минут, в связи с чем процесс апоптоза исследователи часто не могут уловить.

Ультраструктурные проявления некроза значительно отличаются от характерной для апоптоза картины. Главным образом, они сводятся к сморщиванию органелл и дезинтеграции цитоплазмы. Хотя хроматин в некротизирующихся клетках, также как и при апоптозе, конденсируется у ядерной мембраны, его компактные массы менее однородны и значительно менее четко очерчены по краям ядра. После образования этих масс (или даже параллельно с этим процессом) происходит разрушение клеточных и внутриклеточных мембран, в том числе и мембран лизосом, что приводит к высвобождению лизосомальных энзимов, протеолизу и распаду клетки. На более поздней стадии некроза хроматин из ядра исчезает, то есть развивается кариолизис. Некроз обычно сопровождается экссудативным воспалением и, если в процесс вовлечено большое количество клеток, заканчивается образованием рубца. Другими словами, в отличие от апоптоза, при некрозе восстановления цитоархитектоники ткани не происходит.

2. Апоптоз – историческая справка

Феномен апоптоза – программированной клеточной гибели описан исследователями значительно позднее, чем это было сделано по отношению к некрозу.

Так Рудольф Вирхов еще в 1859 году описал гистологические изменения, которые происходят в гибнущих клетках. Речь при этом шла о процессе, который Вирхов назвал “дегенерацией”, “некрозом”, “умиранием клеток”, и подчеркнул, что указанные изменения характерны для необратимых изменений в тканях.

Однако вскоре после этого в 1864 году известный зоолог и теоретик эволюционного учения Август Вейсман впервые описал локальную гибель клеток при метаморфозе у насекомых (превращение личинки во взрослую особь). С современной точки зрения это описание соответствует эмбриональному апоптозу.


Позднее детальное описание смерти клеток, как физиологического явления, было дано в 1885 году немецким цитологом В. Флемингом , который описал распад клеток овариального эпителия на частицы (в последствие названные апоптозными тельцами ), определив процесс быстрого исчезновения образовавшихся при распаде клеток фрагментов цитоплазмы и ядра, как хроматолизис .

Физиологическую смерть клеток у эмбрионов в 1950 году детально описал Л. Глусман , назвав ее «программированной клеточной гибелью». Этот исследователь отчетливо понимал, что имеет дело с особым видом клеточной смерти, но посчитал, что данное явление присуще только эмбриогенезу и принципиально отличается от клеточной гибели, характерной для взрослого организма.

Большинство работ, связанных с описанием апоптоза опухолевых клеток, клеток иммунной системы и некоторых других тканей относятся к концу прошлого века. Сам термин «апоптоз» был впервые применен в статье трех исследователей J . F . R . Kerr , A . H . Wyllie , A . R . Currie , опубликовавших в журнале British J. of Cancer материалы о программированной гибели клеток опухоли.

Значимость апоптоза и его роль в физиологических и патологических процессах была подтверждена присуждением в 2002 году нобелевской премии трем исследователям: Сидни Бреннеру (S . Brenner ), Джону Салстону (J . Sulston ) и Роберту Хорвицу (R . Horvitz ) за циклы работ, посвященных проблеме программированной клеточной гибели. В частности, С. Бреннер еще в 60-е годы прошлого века обнаружил гены, управляющие «жизнью и смертью» клеток органов в процессе их развития. Д. Салстон впервые обнаружил и описал мутации в генах апоптоза, а Р. Хорвиц механизмы взаимосвязи между генами, вовлеченными в процесс апоптоза.

3. Участие апоптоза в физиологических и патологических процессах

Апоптоз – это один из фундаментальных процессов в жизни клеток организмов, находящихся на самом различном уровне эволюционного развития. Достаточно указать, что основные работы, связанные с генетикой апоптоза были выполнены на круглых червях – нематодах. При этом было установлено, что гены, управляющие апоптозом (стимулирующие апоптоз и тормозящие этот процесс) у нематод и человека мало, чем отличаются друг от друга. Именно поэтому, физиологические процессы, в обеспечении которых принимает участи апоптоз, сходны для большинства живых организмов.

При описании каких же физиологических процессов мы сталкиваемся с явлением апоптоза?

Во-первых, это автономный апоптоз, протекающий в процессе эмбриогенеза. Различают три категории автономного эмбрионального апоптоза: морфогенетический, гистогенетический и филогенетический апоптоз. За счет морфогенетического апоптоза разрушаются различные, не нужные формирующемуся организму тканевые зачатки (например, разрушение клеток в межпальцевых промежутках). Гистогенетический апоптоз способствует дифференцировке органов и тканей. Этот вид апоптоза, в частности, сопровождает дифференцировку половых органов из тканевых зачатков (например, регрессию у мужчин зачатков протоков Мюллера, из которых у женщин формируются маточные трубы, матка и верхняя часть влагалища). Филогенетический апоптоз вызывает ликвидацию рудиментарных органов и структур у эмбриона (например, инволюцию пронефроса – «предпочки», парного выделительного органа у низших позвоночных, который не развивается у высших позвоночных).

Физиологическим является и апоптоз, протекающий в медленно – и быстро пролиферирующих клеточных популяциях.

В первом случае речь идет о поддержании тканевого гомеостаза, удалении из ткани клеток, не способных к митозу в силу своего старения и «освобождении места» в ткани для молодых, активно делящихся клеток. Во втором – обеспечение дифференцировки и развития клеточных элементов быстро пролиферирующих клеточных популяций (например, кроветворной ткани). Следует указать, что в данной лекции будет отдельно рассмотрен механизм апоптоза стареющих клеток, так как этот вид апоптоза имеет ряд специфических особенностей.

К участию апоптоза в физиологических процессах можно отнести и так называемую «гормон-зависимую инволюцию органов и тканей». Примером этого процесса может служить отторжение эндометрия во время менструального цикла и регрессия молочной железы у женщины после прекращения кормления ребенка грудью.

Чрезвычайно велика и роль апоптоза в целом ряде патологических процессов. Не останавливаясь на деталях этих процессов (некоторые из них будут рассмотрены в последующих разделах лекции), укажем, что апоптоз характерен для следующих патологических процессах, в которых он может играть как сано-, так и патогенетическую роль:

- апоптоз клеток, имеющих повреждение ДНК. Чаще всего мы сталкиваемся с повреждениями ДНК, обусловленными жесткой радиацией или длительным воздействием ультрафиолетового излучения. В том случае, если репаразные системы клетки не способны «залечить» поврежденную ДНК, включаются гены, ответственные за инициацию апоптоза и клетка гибнет. Таким образом, апоптоз предупреждает возможность появления клона клеток – мутантов, что всегда грозит тяжелыми последствиями для организма;

- апоптоз опухолевых клеток. В определенной степени, это частный случай апоптоза предыдущего вида. Приобретение клетками свойства безудержного размножения без явления созревания в результате воздействия на геном клетки вирусных онкобелков, канцерогенов или той же радиации, может привести к появлению клона малегнизированных клеток, что чревато развитием злокачественных опухолей;

- апоптоз клеток ишемизированных органов и тканей. Ишемия органов и тканей может приводить как к развитию некроза, так апоптоза. В первом случае в ткани будет образовываться рубец, во втором – рубца не будет, но количество нормально функционирующих клеток будет уменьшаться. Явления апоптоза отчетливо регистрируются в периинфарктной зоне при инфаркте миокарда, апоптоз «виновен» в гибели кардиомиоцитов на заключительных стадиях развития сердечной недостаточности. Механизмы этого явления будут рассмотрены в последующих разделах лекции;

- атрофия гормон-зависимых органов в результате апоптоза при недостатке (отсутствии) соответствующего регулирующего гормона. В патологии эндокринной системы хорошо известен так называемый «синдром отмены» - тяжелая патология, связанная с гибелью клеток и, как следствие, прекращением выработки кортикостероидов надпочечниками при отмене длительной терапии кортикоидными препаратами некоторых патологических процессов. Другим примером этого процесса может служить атрофия предстательной железы после кастрации;

- апоптоз клеток, находящихся в состоянии «клеточного стресса». Перегревание клеток, воздействие на клетки активных форм кислорода (кислородных радикалов) по интенсивности не способное вызвать некроз, может приводить к инициированию апоптоза;

- апоптоз клеток, зараженных вирусами. Это очень важная защитная функция организма. Гибель зараженной вирусом клетки с одной стороны препятствует циклу его размножения, а с другой, - препятствует малегнизации ткани за счет появления быстро пролиферирующего клона мутировавших под действием вирусных онкобелков клеток. Следует указать, что некоторые вирусы (например, вирус Эпштейна-Барра) проникая в клетку, способен синтезировать белки, препятствующие апоптозу. С другой стороны, некоторые вирусы (например, вирус СПИДа) способен вызывать апоптоз Т-хелперов и, тем самым, приводить к развитию иммунодефицита;

- апоптоз клеток «хозяина», индуцированный цитотоксическими Т-лимфоцитами при трансплантации иммунокомпетентной ткани. В иммунологии хорошо известна реакция «трансплантат против хозяин». При пересадке иммунокомпетентной ткани (например, костного мозга) иммунные клетки трансплантата способны уничтожать клетки реципиента. При этом уничтожение клеток идет как за счет повреждения клеток протеолитическими ферментами Т-киллеров, так и за счет индукции в клетках хозяина апоптоза.

4. Роль усиления или ослабления апоптоза в развитии патологических процессов

Как усиление, так и ослабление апоптоза может играть едва ли не решающую роль в развитии многих патологических процессов. Ненормальное усиление апоптоза в процессе развития плода может приводить к эффекту «минус ткань», что весьма часто не совместимо с жизнью и заканчивается внутриутробной гибелью плода. Повышенный апоптоз кардиомиоцитов при болезни Дауна способен привести к развитию кардиомиопатии.

Многие виды патологии системы крови так же объясняются повышением уровня апоптоза кроветворных клеток-предшественниц. В результате возникают такие заболевания как тяжелые комбинированные иммунодефициты, апластические анемии , панцитопении. Чаще всего эта патология является следствием недостаточной выработки так называемых «факторов выживания», например, интерлейкина 7 (ИЛ-7), который является цитокином, тормозящим апоптоз стволовых и других клеток-предшественников.

Усиление апоптоза играет ведущую роль в развитии нейродегенеративных процессов (болезни Альцгеймера, болезни Паркинсона и других).

Усиление апоптоза Т-хелперов при СПИДе является основным патогенетическим механизмом этого иммунодефицита. С другой стороны, усиление апоптоза клеток, инфицированных вирусами или поврежденных микробными токсинами, играет положительную роль, прерывая прогрессирование вирусных и микробных инфекций.

Цитотоксическая терапия (применение цитостатиков и радиационная терапия), вызывая повреждение ДНК малегнизированных клеток, с одной стороны блокирует их митотический цикл, а с другой – индуцирует апоптоз.

Ослабление апоптоза так же может способствовать развитию патологических процессов. Прежде всего, это положение хорошо демонстрирует явление ослабления апоптоза при онкологических заболеваниях. Наиболее активными, стремительно развивающимися являются злокачественные опухоли, при развитии которых в силу их особенностей апоптоз опухолевых клеток угнетен. При развитии опухоли происходит как бы соревнование двух процессов: развитие апоптоза и размножение клеток опухоли. Если степень апоптоза малегнизированных клеток высока, их клон не образуется и опухоль не развивается. Если же темпы размножения опухолевых клеток обгоняют апоптоз, в организме возникает злокачественное новообразование.

Повышенная продукция в клетках иммунной системы факторов, тормозящих апоптоз, а также образование внеклеточных факторов, блокирующих апоптоз (например, появление растворимых рецепторов некоторых цитокинов, способных индуцировать апоптоз) может приводить к развитию ряда аутоиммунных процессов, вплоть до проявления системной аутоиммунной патологии (например, системной красной волчанки).

Некоторые из этих явлений, демонстрирующих развитие патологических процессов, связанных как с усилением, так и с ослаблением апоптоза, будут более подробно рассмотрены в последующих разделах лекции.

5. Про - и антиапоптозные клеточные факторы

Мы уже убедились, что на протекании ряда патологических процессов в организме может оказывать кардинальное влияние как ускорение, так и замедление апоптоза. Вещества, участвующие в регуляции апоптоза, как правило, являются белками, а их синтез контролируется соответствующими генами. Выше уже указывалось, что одинаковые гены, регулирующие уровень апоптоза, можно обнаружить у живых существ, стоящих на самых различных ступенях эволюционной лестницы. К числу генов, ингибирующих апоптоз, относятся гены Bcl-2, Ced-9, BHRF1, MCL-1. С другой стороны, были описаны гены, синтезирующие белки, \стимулирующие апоптоз (p53, Bax, bcl-xS). Следует иметь в виду, что про - антиапоптозные белки способны объединяться друг с другом, формируя гомо - и гетеродимеры. Например, при объединении ингибитора апоптоза белка bcl-2 c белком активатором апоптоза Bax итог (торможение или активация апоптоза) будет определяться тем, какой белок будет преобладать в этом объединении.

В дальнейшем, для большей наглядности и некоторого упрощения рассматриваемых механизмов и схем апоптоза в качестве фактора, стимулирующего апоптоз, будет указываться только белок р53 , а в качестве основного фактора, тормозящего апоптоз, - белок Bcl -2.

6. Механизм апоптоза, индуцированного внутриклеточными факторами

Выше уже упоминалось о том, что апоптоз индуцируется в клетках, имеющих нерепарированное повреждение ДНК. В этом случае уничтожение клетки предупреждает появление клонов клеток-мутантов, существование которых может привести к весьма тяжелым последствиям (например, к развитию злокачественной опухоли).

Рис. 1. Механизм апоптоза, индуцированного внутриклеточными факторами

Нерепарированное повреждение ДНК (Рис. 1) приводит к активации двух генов: р21 и р53. Выработка белка р21 одноименным геном обеспечивает блокаду митотического цикла (клетка-мутант не должна производить себе подобные клетки-уроды).

Напомним, что клеточный (митотический) цикл начинается с фазы G1 – подготовки к синтезу ДНК. За ней следуют фазы S – фаза синтеза ДНК и фаза G2 – постсинтетическая. Завершается цикл митозом клетки.

Весьма важными являются и еще два момента в жизни клетки, вошедшей в митотический цикл. Это так называемые «контрольные пункты» (checkpoints): на границе фазы G1/S и на границе фазы G2/митоз. На уровне контрольных пунктов проверяется целостность ДНК, отсутствие ее мутаций и делеций. У клеток, имеющих поврежденную ДНК, клеточный цикл блокируется, и клетка вступает в стадию апоптоза.

Активация гена р53 и синтез одноименного белка запускает механизм апоптоза. При этом белок р53 с одной стороны блокирует антиапоптозные механизмы белка Bcl-2, встроенного в мембраны митохондрий, а с другой – обеспечивает раскрытию пор митохондрий и выход в протоплазму клетки веществ, являющихся активаторами внутриклеточных протеаз - так называемых «казнящих каспаз» (более подробно о митохондриальном механизме апоптоза и о роли каспаз в этом процессе будет рассказано в дальнейшем).

Активные каспазы вызывают протеолиз ядерных белков, активируют эндонуклеазы и обеспечивают протеолиз цитоплазматических белков. В конечном итоге это приводит к фрагментации ядра клетки, фрагментации цитоплазмы и образованию апоптозных телец. Апоптоз завершен.

7. Каспазы. Каспазный каскад

Цистеиновые протеазы – каспазы (в настоящее время описано до 10 видов этих ферментов) находятся в протоплазме клеток в неактивном состоянии (в виде прокаспаз). Каспазы способны активировать друг друга, образуя разветвленный протеолитический каскад (Рис. 2). В активации прокаспаз могут участвовать и некоторые другие вещества, например, цитохром С, содержащийся в митохондриях. В конечном итоге каспазы обеспечивают фрагментацию ядра и цитоплазмы клетки, то есть являются исполнителями уничтожения клетки, за что и получили название «казнящих каспаз».

Рис. 2. Каспазный каскад

Суммируя, можно описать два основных механизма активации прокаспаз. Первый из них реализуется в случае уже описанного нерепарированного повреждения ДНК. В этом случае активация митохондриального механизма апоптоза (подробнее – см. в следующем разделе лекции) приводит к выходу из митохондрий цитохрома С и протеазы AIF (Apoptosis Inducing Factor). Оба эти вещества участвуют в активации прокаспазы 9, которая, в свою очередь, обеспечивает активацию основной «казнящей каспазы» 3, а также каспаз 6 и 7. Активные «казнящие каспазы» завершают процесс апоптоза.

Второй путь активации каспазного каскада связан с реализацией «инструктивного механизма апоптоза» (подробнее см. в последующих разделах лекции). Возбуждение «рецепторов смерти» клетки, реализуемое при посредстве адаптерных белков, приводит к активации прокаспазы 8, которая, в свою очередь, является активатором «казнящих каспаз» 3, 6 и 7.

8. Митохондриальные механизмы апоптоза

Митохондрии – это очень «странные» клеточные органеллы. Например, они обладают собственным, хоть и очень «маломощным» генетическим аппаратом, они – основные донаторы энергии для нужд клетки, но они же и несут в себе факторы клеточной гибели. Существует гипотеза о том, что около 2 миллиардов лет тому назад предки современных эукариот вступили в симбиотический союз с предками современных пурпурных бактерий. Симбиоз был весьма выгоден для его участников, так как в нарождающейся на земном шаре кислородной атмосфере нужно было обретать совершенно новые способы получения и использования энергии. Не умеющие делать это живые существа погибли, или были вынуждены занять очень «тесные» экологические ниши. Однако у симбиотов возникали и возникают конфликты, так как бактерии, ставшие протомитохондриями, в качестве побочного продукта окислительного фосфорилирования поставляла в клетку разнообразные активные формы кислорода (кислородные радикалы). С другой стороны, те же протомитохондрии вырабатывали и необходимые антиоксиданты. Таким образом, само существование клетки стало полностью зависимым от ее симбиотов – митохондрий.

Существуют несколько механизмов участия митохондрий в реализации клеточной гибели. Интересно то, что все они включаются как механизмы программированной клеточной смерти, но одни из них являются истинным апоптозом, а другие могут завершаться некробиозом и некрозом клетки (Рис. 3).

Антиген" href="/text/category/antigen/" rel="bookmark">антигенов , например, семенников или хрусталика глаза от иммуноцитов организма и т. п.).

Колл" href="/text/category/koll/" rel="bookmark">коллег стало ясно, что некроз опухолей вызывает не сам липополисахприд, но некий белковый фактор, который вырабатывается макрофагами при их контакте с бактериями. Этот белковый фактор и получил название «фактор некроза опухолей». К концу ХХ века стало ясно, что ФНО вырабатывается не только активированными макрофагами, но и Т-лимфоцитами, нейтрофилами, тучными клетками, астроцитами и клетками – натуральными киллерами (NK-клетками). В настоящее время твердо установлено, что ФНО способен индуцировать апоптоз самых различных клеточных структур, в том числе – и опухолевых клеток. Кроме того, являясь провоспалительным цитокином, ФНО способен вызывать и некроз клеток как результат их гибели в очаге воспаления.

Рис. 5. Механизмы защиты клетки от апоптоза («рецепторы – приманки»)

Важным элементом механизма инструктивного апоптоза являются рецепторы клетки, способные соединяться с указанными цитокинами. Эти рецепторы (белковые макромолекулы) принадлежат к суперсемейству рецепторов фактора некроза опухолей альфа и, в силу их особой функции, получили название «рецепторов смерти» (Death Receptors). Внутрицитоплазматическая часть этих рецепторов получила название «доменов смерти» (Рис. 4). После соединения с этими рецепторами их лиганд (ФНОa, ФНОb и других) активированный домен смерти при посредстве сложной ферментной системы (адапторного белка) осуществляет автокаталитический процессинг прокиназ, которые, в свою очередь, активирую киназы, входящие в состав каскада «казнящих киназ». Их ферментативное воздействие и осуществляет апоптоз по уже известной схеме.

Следует иметь в виду, что определенную роль в активации киназного каскада играют ионы Са++, которые проникают в клетку через кальциевые каналы, открытию которых так же способствует активация рецепторов смерти.

Клетки способны не только подчиняться лигандам клеточной смерти, но и защищаться от их воздействия. Такая защита может осуществляться двумя способами (Рис. 5). Во-первых, клетки способны синтезировать неполноценные рецепторы смерти, которые или вообще лишены домена смерти, или имеют неполноценный домен смерти. И в том, и в другом случае соединения ФНО с рецептором смерти не приводит к реализации апоптоза, так как воздействие лиганда на рецептор не передается исполнительному аппарату апоптоза. Во-вторых, клетка способна «слущивать» с себя экстрацеллюлярную часть рецепторов, которые при этом становиться так называемыми «растворимыми рецепторами». Появляющиеся в межклеточном пространстве молекулы ФНО прочно соединяются с ними и уже не могут воздействовать на реальные клеточные рецепторы смерти.

10. Эмбриональный апоптоз

Выше уже указывалось, что в процессе развития эмбриона апоптоз может играть как положительную, так и отрицательную роль. Пусковыми факторами апоптоза эмбриональных клеток в большинстве случаев является дефицит апоптозподавляющих факторов в межклеточной среде, недостаток факторов роста, или неспособность эмбриональных клеток воспринимать воздействие этих факторов, а также лишение эмбриональных клеток субстрата адгезии (Рис. 6). Апоптоз нервных клеток может индуцироваться и в том случае, если они не образуют или утрачивают синаптические связи со своими соседями. Кстати, последний механизм действует не только в эмбриональной нервной системе, но и во взрослом организме.

https://pandia.ru/text/78/350/images/image007_2.jpg" width="534" height="346">

Рис. 7. Апоптоз стареющих клеток

Однако, остановка клеточного деления – это тревожный сигнал для генетических программ, отвечающих за клеточную безопасность. Ранее мы уже говорили о том, что в клетке, получившей определенное повреждение, активируются гены (р21, р53), которые блокируют митоз в «чек пойнтах» G1 и G2. Остановка митоза в клетках, достигших лимита Хейфлика, по принципу обратной связи вызывает активацию гена р53 и выработку белка р53, индуцирующего апоптоз. Стареющая клетка прекращает свое существование (Рис. 7).

12. Злокачественные опухоли и апоптоз

При изучении проблем канцерогенеза было отмечено, что одним из наиболее эффективных методов борьбы организма с малегнизацией клеток является их

апоптоз. Если иммунные механизмы борьбы с клетками злокачественных опухолей включаются только тогда, когда в организме уже появились ненормальные клетки-мутанты, то апоптозный механизм реагирует на возможность малегнизации клетки уже в тот момент, когда обнаруживается первичное повреждение ДНК. В этом случае предпосылкой к активации механизмов апоптоза является отсутствие эффекта от деятельности репаразных систем, пытавшихся «залечить» повреждение ДНК. Нерепарированное повреждение ДНК благодаря пока еще мало изученным механизмам обеспечивает включение и активацию гена опухолевого супрессора р53. Повышенная же выработка белка р53 вызывает к жизни ряд последовательных событий:

Рис. 8. Роль опухолевого супрессора р53 в борьбе с малегнизацией клеток

Активацию гена р21 и выработку белка р21, блокирующего митотический цикл на уровне G1 и G2;

Блокирование антиапоптозных факторов (в частности, белка Bcl-2 и некоторых других);

Запуск митохондриального механизма апоптоза;

Повышенный синтез «рецепторов смерти» клетки;

Завершение апоптоза благодаря активации каскада «казнящих каспаз (Рис. 8).

Так развиваются события в том случае, если развитие апоптоза опережает интенсивность пролиферации малегнизированных клеток. Однако, если антиапоптозные механизмы сохраняют жизнь клетки-мутанта, если она успевает дать начало клону своих потомков, опухоль стремительно растет со всеми печальными последствиями этого процесса.

Рис. 9. Радиотерапия опухолей и апоптоз

Механизм апоптоза малегнизированных клеток используется и при радиотерапии опухолей (Рис. 9).

Рис. 10. Зависимость уровня апоптоза от массы опухоли (по)

С другой стороны, размножившиеся опухолевые клетки начинают вырабатывать факторы борьбы с апоптозом. Именно поэтому апоптозный индекс опухоли наиболее велик в самом начале ее развития. Далее он резко падает (Рис. 10).

13. Апоптоз Т-хелперов при СПИДе

Цитопатогенное действие вируса СПИДа на иммуноциты CD4 (Т-хелперы) реализуется несколькими путями.

Во-первых, от действия ВИЧ погибают CD4 клетки, инфицированные этим вирусом. Следует отметить, что их число относительно не велико, так как один из вирусных белков – белок Nef способен тормозить апоптоз.

Рис. 11. Апоптоз Т-хелперов при СПИДе

Во-вторых, при контакте ВИЧ с рецепторным аппаратом зрелых, неинфицированных этим вирусом клеток CD4 в них запускается механизм апоптоза. Кроме того, апоптоз активируется и в гемопоэтических предшественниках клеток CD4 – клетках CD34, что резко снижает образование новых Т-хелперов.

И, наконец, в-третьих, мембранный гликопротеин вируса gp120 способен блокировать корецепторы Т-хелперов. После этого Т-киллеры распознают Т-хелперы как чужеродные клетки и уничтожают их. В результате происходит резкое снижение числа Т-хелперов. Иначе говоря, развивается иммунодефицит (Рис. 11).

14. Апоптоз в тканях, перенесших ишемию и гипоксию (инфаркт миокарда, инсульт, сердечная недостаточность).

Клиницисты и патологи уже давно отмечали, что помимо клеток, погибающих от гипоксического некробиоза в зоне ишемии (например, при инфаркте миокарда или при инсульте), в периинфарктной зоне, имеющей относительно достаточное кровоснабжение, клетки так же погибают, что значительно осложняет патогенез этих заболеваний. В дальнейшем в ряде исследований было выяснено, что гибель клеток в периинфарктной зоне объясняется развитием механизмов апоптоза. При этом, апоптоз этих клеточных элементов был подтвержден как морфологическими методами, так и за счет воздействия на некоторые звенья апоптозного механизма (например, благодаря введению в периинфарктную зону ингибиторов каспаз). Кроме того, апоптоз был выявлен и в ремоделированном миокарде на заключительных стадиях сердечной недостаточности. Какие же факторы обеспечивают запуск механизмов апоптоза при ишемии и гипоксии органов и тканей?

Рис. 12. Апоптоз клеток ишемизированных тканей

Во-первых, это клеточный стресс, возникающий благодаря образованию активных форм кислорода и интенсивному перикисному окислению липидов в очаге ишемии. Вызвать развитие некробиоза эти факторы не могут, а вот запустить внутриклеточный механизм апоптоза вполне способны.

Во-вторых, образование очагов некроза в зоне инфаркта (инсульта) приводит к развитию воспаления, при котором в больших количествах синтезируются провоспалительные цитокины, в частности, ФНОa и ФНОb , которые, как известно, способны запускать механизм апоптоза за счет их соединения с «рецепторами смерти» клетки (Рис. 12).

В последнее время появились исследования, в которых было показано, что молекулы ангиотензина II, соединяясь с рецепторным аппаратом кардиомиоцитов, способны активировать гены апоптоза этих клеток. Таким образом, и этот фактор может вносить свой «вклад» в апоптоз клеток ишемизированных тканей.

Аналогичным образом механизмы апоптоза протекают и в сердце, находящимся в состоянии декомпенсации на поздних стадиях развития хронической сердечной недостаточности.

15. Апоптоз при нейродегенеративных заболеваниях

Явление апоптоза сопровождает развитие и ряда нейродегенеративных заболеваний, таких как болезнь Паркинсона, болезнь Альцгеймера, боковой амниотрофический склероз и другие.

Апоптоз нервных клеток при этих заболеваниях был выявлен как чисто морфологическими методами, так и в тех исследованиях, при которых в ЦНС экспериментальных животных вводились про - и антиапоптозные факторы.

Рис. 13. Апоптоз при нейродегенеративных заболеваниях (на примере болезни Альцгеймера)

Как известно, при нейродегенеративных заболеваниях ЦНС происходит разрушение синаптического аппарата нейронов, а также гибель самих нервных клеток. При болезни Альцгеймера основным фактором ее патогенеза является избыточный синтез b-амилоида и/или его недостаточное разрушение и удаление из ткани головного мозга, что приводит к образованию амилоидных сенильных бляшек, повреждающих нейроны и разрушающих межнейрональные синапсы. Такую же роль играют и нейрофибриллярные клубки, образующиеся в результате выработки аномального тау-протеина.

Повреждения нейронов, их дендритного аппарата, синапсов вызывают локальную воспалительную реакцию, в которой активное участие принимают микроглиальные структуры. При воспалении в нервной ткани накапливаются многие цитокины, в частности, ФНОa. Имеются и многие дополнительные патогенетические факторы, которые усугубляют развитие этого заболевания.

К таким дополнительным факторам относятся, например, нарушение обмена глюкозы в нервной ткани, энергодефицит, усиление перикисного окисления, повреждение и недостаточность антиоксидантных систем нейронов, недостаточность ацителхолиновой и некоторых других трансмиттерных систем головного мозга.

В конечном итоге все факторы патогенеза направлены к одной цели: разрушение межнейрональных связей и гибель нервных клеток. Именно эти нейродегенеративные изменения и реализуют клинику и исход болезни Альцгеймера.

В настоящее время достоверно установлено, что основным механизмом, приводящим к гибели нейронов, является их апоптоз. Апоптоз нейронов может запускаться несколькими путями (Рис. 13).

Во-первых, повреждение нейронов за счет накопления b-амилоида и образования нейрофибриллярных клубков резко увеличивает окислительный клеточный стресс, ведет к интрацеллюлярному накоплению активных форм кислорода. Это, в свою очередь, вызывает активацию NMDA-рецепторов и открытие кальциевых каналов в мембране нейронов. Повышение уровня Са++ в протоплазме нейронов активирует прокаспазы и, далее, весь каскад «казнящих каспаз».

Во-вторых, учитывая, что часть нейронов гибнет за счет развития некробиоза и некроза, в нервной ткани развивается процесс воспаления и, как его неизменный спутник, происходит накопление провоспалительных цитокинов, в том числе – и ФНОa. Контакт этих цитокинов с «рецепторами смерти» клетки запускает механизм «инструктивного апоптоза».

В-третьих, в результате развития болезни Альцгеймера происходит разрушение синапсов, и нервные клетки теряют связь друг с другом. Как мы помним, в эмбриональной нервной ткани это обстоятельство является триггером для запуска внутриклеточных механизмов апоптоза. Судя по всему, этот же механизм действителен и для нервной ткани взрослого организма.

Таковы основные сведения о роли апоптоза в развитии патологии органов и систем организма, а также о его участии в ряде физиологических процессов.

ID: 2017-06-7-A-13064

Оригинальная статья (свободная структура)

Булудова М.В., Полутов В.Э.

ФГБОУ ВО Саратовский ГМУ им. В.И. Разумовского Минздрава РФ, кафедра патологической физиологии им. А.А. Богомольца

Резюме

В работе представлены современные данные литературы, относительно механизмов развития апоптоза, его принципиальных отличий от некроза, значение в поддержании клеточного гомеостаза в лимфоидной и других пролиферирующих тканях.

Ключевые слова

Апоптоз, некроз, механизмы развития, индукторы апоптоза.

Статья

Апоптоз — форма гибели клетки, проявляющаяся в уменьшении ее размера, конденсации и фрагментации хроматина, уплотнении цитоплазматической мембраны без выхода содержимого клетки в окружающую среду. (Попков В.М., Чеснокова Н.П., Барсуков В.Ю., 2011).

Апоптоз играет жизненно важную роль в процессе эмбрионального и онтогенетического развития, имеет место при различных морфогенетических процессах, обеспечивает поддержание клеточного гомеостаза как в лимофоидной ткани, так и в других пролиферирующих тканях. Нарушение апоптоза в эмбриогенезе может приводить к внутриутробной гибели плода, врожденным уродствам или различным заболеваниям, в том числе и злокачественным новообразованиям.

Различают два типа гибели клетки: апоптоз и некроз. Принципиальные различия заключаются в следующем: некроз является результатом незапланированного события и происходит спонтанно, апоптоз формируется как четко - регулируемый, генетически-детерминируемый процесс элиминации клетки. Отличительной морфологической чертой апоптоза является коллапс ядра. Хроматин становится суперконденсированным в форме полумесяца по периферии ядра, в этот момент начинается фрагментация ДНК. Характерными признаками апоптоза, позволяющими отличить его от некроза, являются:

а) переход фосфатидилсерина из внутреннего монослоя цитоплазматической мембраны в наружный монослой; выход цитохрома С из межмембранного пространства митохондрий в цитоплазму

б) активация цистеиновых протеиназ (каспаз)

в) образование активных форм кислорода

г) сморщивание (blebbing) цитоплазматической мембраны

д) последующий распад ядра на части

е) фрагментация клеток на везикулы с внутриклеточным содержимым — апоптотические тельца

ж) апоптотические тела захватываются фагоцитирующими клетками микроокружения, как в случае некроза. При развитии апоптоза выброса клеточного содержимого не происходит, воспаление не возникает. Некроз распространяется обычно на группы клеток, в то время как апоптоз носит селективный характер в отношении отдельных клеток (Дмитриева Л.А., Максимовский Ю.М., 2009).

Стадии апоптоза

Стадия инициации . На этой стадии патогенный агент либо сам является информационным сигналом, либо обусловливает генерацию сигнала в клетке и его проведение к внутриклеточным регуляторным структурам и молекулам. Инициирующие апоптоз стимулы могут быть трансмембранными или внутриклеточными. Трансмембранные сигналы подразделяют на отрицательные и положительные. Отрицательные сигналы обусловливают отсутствие или прекращение воздействия на клетку различных факторов роста, регулирующих деление и созревание клетки. Положительные сигналы генерируют запуск программы апоптоза. Так, связывание TNFα (FasL) с его мембранным рецептором CD95 (Fas) активирует программу смерти клетки. Среди внутриклеточных стимулов апоптоза зарегистрированы избыток Н+, свободные радикалы липидов и других веществ, повышенная температура, внутриклеточные вирусы и гормоны, реализующие свой эффект через ядерные рецепторы (например, глюкокортикоиды).

Стадия программирования. На этой стадии специализированные белки либо реализуют сигнал к апоптозу путём активации исполнительной функции, либо блокируют потенциально летальный сигнал. Выделяют два варианта реализации стадий программирования: 1) путём прямой активации эффекторных каспаз и эндонуклеаз (минуя геном клетки) и 2) опосредованной через геном передачи сигнала на эффекторные каспазы и эндонуклеазы. Прямая передача сигнала осуществляется через адапторные белки, гранзимы и цитохром С. Опосредованная передача сигнала подразумевает репрессию генов, кодирующих ингибиторы апоптоза, и активацию генов, кодирующих промоторы апоптоза.
Стадия реализации программы состоит в собственно гибели клетки, осуществляемой посредством активации протеолитического и нуклеолитического каскадов.
Непосредственными исполнителями процесса «умертвления» клетки являются Ca2+,Mg2+ -зависимые эндонуклеазы и эффекторные каспазы. В результате разрушения белков и хроматина в процессе апоптоза клетка подвергается деструкции, когда в ней формируются и отпочковываются фрагменты клетки, содержащие остатки органелл, цитоплазмы, хроматина и цитолеммы, то есть апоптозные тельца.

Стадия удаления фрагментов погибших клеток. На поверхности апоптозных телец экспрессируются лиганды, с которыми взаимодействуют рецепторы фагоцитирующих клеток. Фагоциты быстро обнаруживают, поглощают и разрушают апоптозные тельца. Благодаря этому содержимое разрушенной клетки не попадает в межклеточное пространство. (Лихтенштейн А.В., Шапот В.С., 1998).

Одно из апоптотических событий реализуется в ядре клетки и заключается в фрагментации ДНК. Деградация ДНК является терминальной фазой апоптоза, связанной с проявлением активности различных эндонуклеаз, последние обусловливают либо появление крупных фрагментов ДНК, или развитие межнуклеосомальной деградации ДНК. Считают, что этот тип деградации обеспечивается активацией Са2+, Mg2+-зависимой эндонуклеазы.

Исследования последних лет привели к формированию принципиально новых представлений о механизме гибели клеток, имеющих повреждения ДНК, как о процессе, осуществляемом в соответствии с определенной генетической программой. В индукции этой программы при наличии повреждений в ДНК клетки важная роль принадлежит белку р53. Этот белок с молекулярной массой 53 кД, локализован в ядре клетки и является одним из транскрипционных факторов. Повышенная экспрессия этого белка приводит к репрессии ряда генов, регулирующих транскрипцию и причастных к задержке клеток в фазе клеточного цикла G1. Если же активность репарационных систем недостаточна и повреждения ДНК сохраняются, то в таких клетках индуцируется программируемая клеточная гибель, или апоптоз, что приводит к защите организма от присутствия клеток с поврежденной ДНК, т.е. мутантных и способных к злокачественной трансформации.
Таким образом, при действии генотоксических агентов р53 не только увеличивает время репарации ДНК. но также защищает организм от клеток с опасными мутациями. (Паукова В.С., Пальцева М.А., Улумбекова Э.Г., 2015).

Механизмы индукции апоптоза

Регуляция апоптоза обеспечивается гормонами, цитокинами и в значительной мере особенностями генома. Ослабление или устранение гормональных влияний на клетки- мишени приводит, как правило, к индукции апоптоза.

Цитокины - это обширная группа белков, регулирующих пролиферацию и дифференцировку клеток при связывании со специфическими рецепторами на клетках мишенях. Цитокины подразделяются на 3 большие группы: ростовые, семейство Фактора некроза опухоли и спиральные цитокины. Эффект цитокинов на клетки неоднозначен в связи с гетерогенностью их структуры и функции: для одних клеток ряд цитокинов выступают в роли индукторов апоптоза, а для других - в роли ингибиторов апоптоза. Это зависит от типа клетки, от стадии ее дифференцировки, от функционального состояния клетки. (Goodwin P.J., Ennis M., Pritchard K.I., 2002).

Наиболее хорошо изучена последовательность событий, приводящих клетку к апоптозу в результате взаимодействия белков из семейства TNFα со специфическими рецепторами. Ярким представителем этой группы белков является система Fas/Fas-L. Следует отметить, что для этой системы не известны другие функции, кроме как индукции апоптоза клетки. Взаимодействие Fas с Fas-L (лиганд) или с моноклональными антителами приводит к апоптозу клетки. При связывании лиганда с рецептором происходит олигомеризация цитоплазматических белков: (1) DD (домен смерти), относящийся к рецептору, (2) адапторного белка - FADD (Fas-ассоциированный домен смерти), содержащий DED - эффекторный домен смерти и (3) прокаспазы-8. (Паукова В.С., Пальцева М.А., Улумбекова Э.Г., 2015).

Важная роль в регуляции апоптоза клеток иммунной системы принадлежит другим цитокинам -интерлейкинам, интерферонам. Было обнаружено, что интерлейкины являются индукторами апоптоза как в здоровых, так и в малигнизированных клетках и клеточных линиях. Однако не только роль индукторов апоптоза свойственна интерлейкинам, не менее выраженный эффект цитокинов наблюдается в предотвращении апоптоза. При этом один и тот же IL может быть как индуктором апоптоза, так и его ингибитором. Так, например, IL 1 является индуктором апоптоза для клеток мышиной тимомы в случаях ингибирования размножения клеток и ингибитором апоптоза для этих же клеток в случаях их интенсивного размножения. Неоднозначна и роль интерферонов по влиянию на клетки. В одних случаях IFN вызывает апоптоз (клетки костного мозга), в других - является ингибитором апоптогенного сигнала (периферические моноциты человека).

Таким образом, апоптоз является тем механизмом, который обуславливает элиминацию клеток с определенной специфичностью рецепторов. (Миронова С.П., Котельников Г.П., 2013).

В настоящее время складывается впечатление о центральной роли протеаз в запуске и развитии процесса апоптоза. Причем, по-видимому, при апоптозе, в отличие от физиологического ответа клетки, действуют свои, характерные только для апоптоза, специализированные необратимые реакции протеолиза, катализируемые специфическими протеазами, относящихся к классу цистеиновых протеаз.

Роль наследственных факторов в регуляции апоптоза

Выяснение роли белков семейства Вс1-2 занимает центральное место в изучении регуляции процесса апоптоза. К настоящему времени известно, что белки этого семейства относятся либо к индукторам апоптоза (Bad, Bax, Bcl-Xs, Bik, Bid, Bak), либо к ингибиторам (Bcl-2, Bcl-XL). Белки семейства Bcl-2 находятся в постоянном динамическом равновесии, образуя гомо- и гетеродимеры, что в конечном счете влияет на развитие апоптоза клеток. Поэтому считается, что соотношение активных форм этих белков определяют реостат жизни и смерти клетки. (Попков В.М., Чеснокова Н.П., Захарова Н.Б., 2016).

Таким образом, апоптоз является общебиологическим механизмом, ответственным за поддержание постоянства численности клеточных популяций, а также формообразование и выбраковку дефектных клеток. Нарушение регуляции апоптоза приводит к возникновению различных заболеваний, связанных с усилением или, наоборот, ингибированием апоптоза. Следовательно, изучение механизмов регуляции различных этапов данного процесса позволит определенным образом воздействовать на его отдельные этапы с целью их регуляции или коррекции. В настоящее время общепринято: если клетка погибает от апоптоза - подразумевается возможность терапевтического вмешательства, если вследствие некроза - нет. На основе знаний о программированной гибели клетки используется широкий ряд препаратов с целью регуляции этого процесса в различных типах клеток.

Процесс, при котором клетка может убивать сама себя, называется запрограммированной клеточной гибелью (ЗГК). Этот механизм имеет несколько разновидностей и играет важнейшую роль в физиологии различных организмов, особенно многоклеточных. Самой часто встречающейся и хорошо изученной формой ЗГК является апоптоз.

Что такое апоптоз

Апоптоз - это контролируемый физиологический процесс самоуничтожения клетки, характеризующийся поэтапным разрушением и фрагментацией ее содержимого с формированием мембранных пузырьков (апоптозных телец), впоследствии поглощаемых фагоцитами. Этот генетически заложенный механизм активируется под воздействием определенных внутренних или внешних факторов.

При таком варианте гибели клеточное содержимое не выходит за пределы мембраны и не вызывает воспаление. Нарушения в регуляции апоптоза приводят к серьезным патологиям, таким как неконтролируемые клеточные деления или дегенерация тканей.

Апоптоз представляет собой лишь одну из нескольких форм запрограммированной гибели клетки (ЗГК), поэтому отождествлять эти понятия ошибочно. К известным видам клеточного самоуничтожения относят также митотическую катастрофу, аутофагию и программированный некроз. Другие механизмы ЗГК пока не изучены.

Причины апоптоза клеток

Причиной запуска механизма запрограммированной клеточной гибели могут быть как естественные физиологические процессы, так и патологические изменения, вызванные внутренними дефектами или воздействием внешних неблагоприятных факторов.

В норме апоптоз уравновешивает процесс деления клеток, регулируя их количество и способствуя обновлению тканей. В таком случае причиной ЗГК служат определенные сигналы, входящие в систему контроля гомеостаза. С помощью апоптоза уничтожаются одноразовые или выполнившие свою функцию клетки. Так, повышенное содержание лейкоцитов, нейтрофилов и других элементов клеточного иммунитета по окончании борьбы с инфекцией устраняется именно за счет апоптоза.

Запрограммированная гибель является частью физиологического цикла репродуктивных систем. Апоптоз задействован в процессе оогенеза, а также способствует гибели яйцеклетки при отсутствии оплодотворения.

Классическим примером участия апоптоза клеток в жизненном цикле вегетативных систем является осенний листопад. Сам термин происходит от греческого слова apoptosis, что буквально переводится как "опадание".

Апоптоз играет важнейшую роль в эмбриогенезе и онтогенезе, когда в организме сменяются ткани и атрофируются определенные органы. Примером могут служить исчезновение перепонок между пальцами конечностей некоторых млекопитающих или отмирание хвоста при метаморфозе лягушки.

Апоптоз может быть спровоцирован накоплением дефектных изменений в клетке, возникших в результате мутаций, старения или ошибок митоза. Причиной запуска ЗГК могут быть неблагоприятная среда (недостаток питательных компонентов, дефицит кислорода) и патологические внешние воздействия, опосредованные вирусами, бактериями, токсинами и т. д. При этом если повреждающий эффект слишком интенсивен, то клетка не успевает осуществить механизм апоптоза и погибает в результате развития патологического процесса - некроза.

Морфологические и структурно-биохимические изменения клетки во время апоптоза

Процесс апоптоза характеризуется определенным набором морфологических изменений, которые с помощью микроскопии можно наблюдать в препарате ткани in vitro.

К основным признакам, характерным для апоптоза клеток, относят:

  • перестраивание цитоскелета;
  • уплотнение клеточного содержимого;
  • конденсацию хроматина;
  • фрагментацию ядра;
  • уменьшение объема клетки;
  • сморщивание контура мембраны;
  • образование пузырьков на клеточной поверхности,
  • деструкцию органоидов.

У животных эти процессы завершаются образованием апоптоцитов, которые могут быть поглощены как макрофагами, так и соседними клетками ткани. У растений формирования апоптозных телец не происходит, а после деградации протопласта сохраняется остов в виде клеточной стенки.

Помимо морфологических изменений, апоптоз сопровождается рядом перестроек на молекулярном уровне. Происходит повышение липазной и нуклеазной активностей, которые влекут за собой фрагментацию хроматина и многих белков. Резко увеличивается содержание сАМФ, изменяется структура клеточной мембраны. В растительных клетках наблюдается образование гигантских вакуолей.

Чем апоптоз отличается от некроза

Главное различие между апоптозом и некрозом заключается в причине клеточной деградации. В первом случае источником разрушения служат молекулярные инструменты самой клетки, которые работают под строгим контролем и требуют затрат энергии АТФ. При некрозе происходит пассивное прекращение жизнедеятельности из-за внешнего повреждающего воздействия.

Апоптоз - это естественный физиологический процесс, сконструированный таким образом, чтобы не вредить окружающим клеткам. Некроз - это неконтролируемое патологическое явление, возникающее в результате критических повреждений. Поэтому неудивительно, что механизм, морфология и последствия апоптоза и некроза во многом противоположны. Однако имеются и общие черты.

В случае повреждения клетки запускают механизм запрограммированной гибели в том числе для того, чтобы не допустить некротического развития. Однако недавние исследования показали, что существует иная непатологическая форма некроза, которую также отнесли к ЗГК.

Биологическое значение апоптоза

Несмотря на то что апоптоз приводит к клеточной гибели, его роль для поддержания нормальной жизнедеятельности всего организма очень велика. Благодаря механизму ЗГК осуществляются следующие физиологические функции:

  • поддержание баланса между пролиферацией и смертью клеток;
  • обновление тканей и органов;
  • устранение дефектных и "старых" клеток;
  • защита от развития патогенного некроза;
  • смена тканей и органов при эмбрио- и онтогенезе;
  • удаление ненужных элементов, выполнивших свою функцию;
  • устранение клеток, нежелательных или опасных для организма (мутантных, опухолевых, зараженных вирусом);
  • предотвращение развития инфекции.

Таким образом, апоптоз является одним из способов поддержания клеточно-тканевого гомеостаза.

Этапы клеточной смерти

То, что происходит с клеткой при апоптозе, является результатом сложной цепочки молекулярных взаимодействий между различными ферментами. Реакции проходят по типу каскада, когда одни белки активируют другие, способствуя постепенному развитию сценария гибели. Этот процесс можно разделить на несколько этапов:

  1. Индукция.
  2. Активация проапоптических белков.
  3. Активация каспаз.
  4. Разрушение и перестройка клеточных органелл.
  5. Формирование апоптоцитов.
  6. Подготовка клеточных фрагментов к фагоцитозу.

Синтез всех компонентов, необходимых для запуска, реализации и контроля каждого этапа заложен генетически, почему апоптоз и называют запрограммированной гибелью клетки. Активация этого процесса находится под строгим контролем регуляторных систем, включающих в том числе и различные ингибиторы ЗГК.

Молекулярные механизмы апоптоза клетки

Развитие апоптоза обуславливается совокупным действием двух молекулярных систем: индукционной и эффекторной. Первый блок отвечает за контролируемый запуск ЗГК. В него входят так называемые рецепторы смерти, Cys-Asp-протеазы (каспазы), ряд митохондриальных компонентов и проапоптических белков. Все элементы индукционной фазы можно разделить на тригеры (участвуют в индукции) и модуляторы, обеспечивающие трансдукцию сигнала смерти.

Эффекторную систему составляют молекулярные инструменты, обеспечивающие деградацию и перестройку клеточных компонентов. Переход между первой и второй фазами осуществляется на этапе протеолитического каспазного каскада. Именно за счет компонентов эффекторного блока происходит гибель клетки при апоптозе.

Факторы апоптоза

Структурно-морфологические и биохимические изменения при апоптозе осуществляются определенным набором специализированных клеточных инструментов, среди которых наиболее важными являются каспасы, нуклеазы и мембранные модификаторы.

Каспазы - группа ферментов, разрезающих пептидные связи по остаткам аспарагина, фрагментируя белки на крупные пептиды. До начала апоптоза присутствуют в клетке в неактивном состоянии из-за ингибиторов. Главной мишенью каспаз являются ядерные белки.

Нуклеазы - ответственны за разрезание молекул ДНК. Особо важна в развитии апоптоза активная эндонуклеаза CAD, разрывающая участки хроматина в областях линкерных последовательностей. В результате образуются фрагменты длиной 120-180 нуклеотидных пар. Комплексное воздействие протеолитических каспаз и нуклеаз приводит к деформации и фрагментации ядра.

Модификаторы клеточной мембраны - нарушают асимметричность билипидного слоя, превращая его в мишень для фагоцитирующих клеток.

Ключевая роль в развитии апоптоза принадлежит каспазам, которые поэтапно активируют все последующие механизмы деградации и морфологической перестройки.

Роль каспаз в клеточной гибели

Семейство каспаз включает 14 белков. Часть из них не задействована в апоптозе, а остальные подразделяются на 2 группы: инициаторные (2, 8, 9, 10, 12) и эффекторные (3, 6 и 7), которые иначе называются каспазами второго эшелона. Все эти белки синтезируются в виде предшественников - прокаспаз, активируемых протеолитическим расщеплением, суть которого состоит в отсоединении N-концевого домена и разделении оставшейся молекулы на две части, в последствии ассоциирующиеся в димеры и тетрамеры.

Инициаторные каспазы необходимы для активации эффекторной группы, которая проявляет протеолитическую активность в отношении различных жизненно важных клеточных белков. К субстратам каспаз второго эшелона относятся:

  • ферменты репарации ДНК;
  • игибитор белка р-53;
  • поли-(ADP-рибозо)-полимераза;
  • ингибитор ДНК-азы DFF (разрушение этого белка приводит к активации эндонуклеазы CAD) и др.

Общее количество мишеней эффекторных каспаз насчитывает более 60 белков.

Ингибирование апоптоза клеток еще возможно на стадии активации инициаторных прокаспаз. Когда эффекторные каспазы вступают в действие, процесс становится необратимым.

Пути активации апоптоза

Передача сигнала для запуска апоптоза клетки может быть осуществлена двумя путями: рецепторным (или внешним) и митохондриальным. В первом случае процесс активируется через специфические рецепторы смерти, воспринимающие внешние сигналы, которыми служат белки семейства TNF или Fas-лиганды, расположенные на поверхности Т-киллеров.

В состав рецептора входит 2 функциональных домена: трансмембранный (предназначенный для связи с лигандом) и ориентированный внутрь клетки "домен смерти", индуцирующий апоптоз. Механизм рецепторного пути основывается на образовании DISC-комплекса, активирующего инициаторные каспазы 8 или 10.

Сборка начинается со взаимодействия домена смерти с внутриклеточными адапторными белками, которые, в свою очередь, связывают инициаторные прокаспазы. В составе комплекса последние превращаются в функционально-активные каспазы и запускают дальнейший апоптозный каскад.

Механизм внутреннего пути основан на активации протеолитического каскада особыми митохондриальными белками, выброс которых контролируется внутриклеточными сигналами. Выход компонентов органоидов осуществляется через образование огромных пор.

Особая роль в запуске принадлежит цитохрому с. Попадая в цитоплазму, этот компонент электротранспортной цепи связывается с белком Apaf1 (апоптотический фактор активации протеаз), что приводит к активации последнего. Затем Apaf1 связывают инициаторные прокаспазы 9, которые по механизму каскада запускают апоптоз.

Контроль внутреннего пути осуществляется особой группой белков семейства Bcl12, которые регулируют выход межмембранных компонентов митохондрий в цитоплазму. В составе семейства имеются как проапоптические, так и антиапоптические белки, баланс между которыми и определяет, будет ли запущен процесс.

К одним из мощных факторов, запускающих апоптоз по митохондриальному механизму, относятся реактивные формы кислорода. Еще одним значимым индуктором является белок р53, который активирует митохондриальный путь при наличии ДНК-повреждений.

Иногда запуск апоптоза клеток сочетает в себе сразу два пути: как внешний, так и внутренний. Последний обычно служит для усиления рецепторной активации.

Явления запрограммированной клеточной гибели известны уже более 100 лет, но оставались «в тени» некробиотических процессов, которые на протяжении десятилетий изучались намного более активно, чем программируемая гибель. Этот вид клеточной гибели представляет собой важнейший интегральный компонент эмбриогенеза, морфогенеза и роста тканей, а также гормонозависимой инволюции. Он, наряду с лизосомальнойаутофагией , участвует в механизмах таких клеточных адаптации, какатрофия (уменьшение размеров клеток и числа функционирующих структур в них при сохранении жизнеспособности клетки) игипоплазия (уменьшение органа вследствие уменьшения числа клеток в нем при сохранении его жизнеспособности).

Так, например, показано, что инволютивные изменения в коре надпочечников после гипофизэктомии тормозятся актиномицином Д, а, значит, представляют собой активный процесс реализации некой программы саморазборки клеток.

Для обозначения процесса запрограммированной клеточной гибели, морфологически и патохимически отличного от некробиоза, предложен термин «апоптоз». Основатели учения об апоптозе, в частности, Дж. Керр и соавт, считали понятия «запрограммированная клеточная гибель» и «апоптоз» равнозначными. В последнее время имеется тенденция применять первый термин к процессам устранения клеток в раннем онтогенезе, а понятие апоптоз относить только к программируемой гибели зрелых дифференцированных клеток. Так, указывают на наличие аутофагии и отсутствие разрывов ДНК при эмбриональной клеточной гибели, в отличие от апоптоза зрелых клеток.

Вопрос о соотношении некробиоза и апоптоза и о приуроченности этих механизмов к естественной либо насильственной гибели клеток нуждается в обсуждении. Было бы упрощением сказать, что апоптоз – это исключительно процесс естественной гибели клеток, а некробиоз – насильственной. Деление на эти два процесса далеко не абсолютно. Выше, обсуждая паттерны некробиоза, мы уже много раз вынуждены были упоминать об апоптозе, так как между этими процессами много общего. Дело в том, что в ответ на минимальное повреждение или повреждение, не вызывающее быстрого развития глубокой гипоксии и выраженного энергодефицита, клетки могут включать специальную программу самоуничтожения и реагировать апоптозом. В этом случае, например, при действии ионизирующего излучения или вируса СПИДа, смерть клетки насильственна, но механизм ее не некробиотический, а апоптотический. Тельца Каунсильмена, обнаруживаемые при вирусном гепатите в печени, представляют собой результат апоптоза гепатоцитов под воздействием вирус-индуцированного повреждения. Это также насильственная гибель, но механизм ее не связан с быстропрогрессирующей гипоксией и позволяет клетке успеть включить программу саморазборки. Не подлежит сомнению насильственный характер гибели клеток-мишеней под воздействием фактора некроза опухолей. Однако, несмотря на свое категоричное название, данный биорегулятор вызывает в таргетных клетках не только некроз, но и апоптоз. При реализации некробиоза и апоптоза функционируют многие общие механизмы, например, увеличение цитоплазматической концентрации ионизированного кальция и образование свободных активных кислородных радикалов. Более того, при большей силе и интенсивности действия апоптогенный стимул может вызвать некробиоз, очевидно, вследствие того, что прогрессирующий энергодефицит не дает возможности клеткам реализовать энергетически «дорогую» динамику апоптоза.

Таблица 1

Типовые характеристики основных способов гибели клетки.

Некробиоз и некроз

Морфологическая картина

Конденсация и фрагментация цитоплазмы, конденсация и рексис ядра, аутофагия митохондрий, мембраны долго остаются стабильными. Нет перифокального воспаления и демаркации. Формируются апоптозные тельца, которые фагоцитируются.

Кариопикноз или кариолизис, набухание и последующее сморщивание и кальциноз в митохондриях, раннее разрушение мембран, аутолиз клетки, перифокальное воспаление, демаркационный вал

Патохимия

Нет выраженного энергодефицита, упорядоченные межнуклеосомные разрывы ДНК, синтез БТШ, АРО-1 и других специальных белков, активация эндонуклеазы. Фрагментация цитоплазмы при участии цитоскелета. Тормозится блокаторами кальциевых каналов и актиномицином Д-1.

Выраженный энергодефицит, гипергидратация клетки, ацидоз, гидролиз, диффузная деградация хроматина. Прекращение белкового синтеза. Парез и агрегация элементов цитоскелета.

Этиология

Воздействие умеренно сильных повреждений и специальные не повреждающие триггерные сигналы (гормоны, цитокины)

Воздействие мощных экстремальных факторов

Если некробиоз всегда сопровождается освобождением в окружающую ткань, а при массивном поражении – и в системный кровоток, медиаторов воспаления, в частности, липидных продуктов деструкции клеточных мембран, то апоптоз протекает без лейкоцитарной демаркации и перифокального воспаления, так как его механизм позволяет избежать значительного выделения медиаторов клеточного повреждения. Издание в 1996 году всеобъемлющей монографии, посвященной апоптозу, облегчает нашу задачу и делает возможным охарактеризовать в данной книге лишь наиболее общие и патофизиологически важные аспекты этой проблемы.

1. Устранение клеток в раннем онтогенезе.

2. Физиологическая инволюция и уравновешивание митозов в зрелых тканях и клеточных популяциях

3. Реализация процессов атрофии и регрессия гиперплазии

4. Альтруистический суицид мутантных и пораженных вирусами клеток

5. Клеточная гибель после слабого воздействия агентов, вызывающих при массированном поражении некроз.

Чтобы более наглядно представить отличия некробиоза и апоптоза, авторы предлагают подробно изучить приводимую таблицу.

Важно отметить, что некроз происходит после насильственной гибели клетки в результате каких-либо причин, вызывающих глубокую тканевую гипоксию, и всегда содержит литический компонент в виде либо лизосомального аутолиза, либо гетеролиза, вызываемого гидролазами фагоцитов. По современным представлениям, аутолиз при гибели клетки носит посмертный характер, а не является элементом некробиоза. Тем не менее, раннее и значительное повреждение клеточных мембран – неотъемлемая часть процессов некробиоза, и практически не наблюдается при апоптозе.

Апоптоз – генетически управляемый процесс, который может быть включен различными пусковыми сигналами без какого-либо существенного предварительного повреждения исполнительного аппарата клетки, хотя может и включиться после умеренного повреждения как альтруистическое самоубийство. Устранение клеток без повреждения возможно и при экспрессии антигена стареющих клеток. Возможно, что эти ме­ханизмы «ухода без скандала» комбинируются и/или взаимодействуют.

Принципиально важно, что при неспособности вступить в апоптоз возникает неограниченно пролиферирующий клон клеток, что ведет к серьезным нарушениям в многоклеточном организме и наблюдается, например, при онкологических заболеваниях. До сих пор в данной книге мы часто упоминали об отно­сительной полезности и потенциальной патогенности различных запрограммированных защитных процессов и приводили примеры такой «вредной полезности». В данном случае мы видим основное противоречие патофизиологии, как бы, в обратном ракурсе. Иными словами, апоптоз в клеточном цикле выступает как минимальное запрограммированное зло и также иллюстрирует основное положение наших рассуждений, так как является приспособительной смертью, гибелью по программе и своего рода «полезным вредом» в чистом виде. В любом случае, наблюдения за злокачественными клетками, утратившими под действием онкогенов способность к апоптозу, доказывают, что для клеток утрата способности вовремя умереть – большое зло.

Апоптоз может начаться как ответ генов, программирующих клеточную саморазборку, на рецепторно-опосредоваиный сигнал (например, при стимуляции соответствующими биорегуляторами рецепторов ФНОили глюкокортикоидного рецептора лимфоцитов).

Не только ФНО и глюкокортикоиды, но и почти все цитокины, включая 13 интерлейкинов и 3 интерферона могут быть кодовыми сигналами апоптоза, причем в одних клетках они его запускают, а в других – ингибируют. Тканеспецифические факторы роста и гемопоэтины являются ингибиторами апоптоза для своих клеток-мишеней. Тропные гормоны гипофиза оказывают свой трофический эффект на железы-мишени также путем ингибирования апоптоза.

Сигнал может оказывать на клетку разнонаправленное в отношении апоптоза действие в зависимости от исходного состояния мишени, как это описано выше для ФНО.

В роли генетических индукторов апоптоза, срабатывающих в ответ на рецепторный сигнал, могут выступать гены FAS/АРО-1, с-мус, мах, р53,ced-З и другие. Подавление экспрессии некоторых генов, например,bcl-2, также вызывает апоптоз. Детальное изучение механизмов, с помощью которых продукты этих генов запускают или сдерживают апоптоз, только начато. Однако уже выяснено, что они могут усиливать образование активных кислородных радикалов (как белок АРО-1, гомологичный рецептору фактора некроза опухолей), регулировать перенос кальция в цитоплазму (как продукт генаbcl-2), запускать нейтральные протеазы цитозоля (как продукт генаced-3), связываться с ДНК (как димер белков мус-мах).

Принципиально важно, что апоптоз может быть индуцирован даже в безъядерных постклеточных структурах. Следовательно, первичным звеном апоптоза могут быть не только ядерные события, но и определенные метаболические изменения в цитоплазме или активация долгоживущих матричных РНК, как в случае с антигеном стареющих клеток.

Инициировать апоптоз могут активные кислородные радикалы (АКР). При умеренных повреждениях клетки в отсутствие гипоксии происходит редукция трансмембранного потенциала митохондрий и генерация ими АКР. Если антиоксидантные системы клетки не компенсируют сдвига редокс-потенциала, процесс прогрессирует. При условии отсутствия выраженного энергодефицита и сохранности генетического аппарата реализуется апоптоз, но глубокая гипоксия и выраженные повреждения ДНК инициируют некробиоз. При развитии апоптоза АКР изменяют условия взаимодействия кальция с кальмодулином и способствуют нарастанию цитоплазматической и внутриядерной активности (а при блокаде гена bcl-2 – и росту внутриклеточной концентрации) кальция.

Кальций-зависимое звено механизма апоптоза активирует кальпаины, что ведет к протеолизу белков цитоскелета, образованию цитоплазматических выпячиваний, разрушению межнуклеосомных связей в ядре. Активируется кальцийзависимая эндонуклеаза. Это провоцирует упорядоченные межнуклеосомные разрывы хроматина и фрагментацию ядра. Кальций-зависимая трансглютаминаза агрегирует цитозольные белки. Конечным этапом процесса служит распад клетки на апоптотические тельца и их аутофагоцитоз.

Вам также будет интересно:

Как распознать ведьму — признаки, предупреждающие зло Сумеречная ведьма какая она магия
Связь с погодой Настоящая ведьма имеет тесную связь с природой. Она буквально черпает из...
Из чего производят инсулин
Препарат, позволяющие сдерживать течение сахарного диабета, одновременно снижая уровень...
Эстрада ссср Советские эстрадные певцы 60х 70х годов
Советские звезды эстрады сильно отличались от нынешних. Они обходились без лимузинов и...
Государственный комитет по чрезвычайному положению Мнение бывших участников гкчп
Основная цель путчистов заключалась в том, чтобы не допустить ликвидации СССР, которая, по...
Жареная треска на сковороде
Среди множества рыбных рецептов большой популярностью у хозяек пользуются блюда из трески,...