Сайт о холестерине. Болезни. Атеросклероз. Ожирение. Препараты. Питание

Филлохинон препараты. Витамин К (филлохинон). Воспаление и иммунология

Евгений головихин - программа дополнительного образования детей "самбо"

Акафист «Взыскание погибших» и происхождение иконы Божьей Матери Псалтырь и акафист божией матери взыскание погибших

Поможем храму, где началось «Милосердие Храм цесаревича димитрия при первой градской больнице

Церковь троицы живоначальной, что в листах Храм троицы в листах сухаревская

Селедка под шубой с огурцом — кулинарный рецепт

Пошаговый рецепт приготовления ленивых хачапури из лаваша Самые ленивые хачапури в духовке

Как приготовить пюре: суп-пюре, картофельное, гороховое, овощное

Домашнее мороженое со сгущенкой (без яиц)

Кукурузные палочки с ирисками

Приготовление печеночной колбасы у себя дома

Путассу — рецепты приготовления оригинальных и простых рыбных блюд

Описание калорийности разных сортов сыра

И как выглядят его бывшая жена, красавица-дочь и сын, которым он гордится?

Любовный гороскоп для Овна

Иммунологическая память. Иммунологическая толерантность

При повторной встрече с антигеном орга­низм формирует более активную и быструю иммунную реакцию - вторичный иммунный ответ. Этот феномен получил название имму­нологической памяти.

Иммунологическая память имеет высо­
кую специфичность к конкретному анти­
гену, распространяется как на гуморальное,
так и клеточное звено иммунитета и обус­
ловлена В- и Т-лимфоцитами. Она обра­
зуется практически всегда и сохраняется
годами и даже десятилетиями. Благодаря
ней наш организм надежно затишен от
повторных антигенных интервенции. __

На сегодняшний день рассматривают два наиболее вероятных механизма формирова­ния иммунологической памяти. Один из них предполагает длительное сохранение анти­гена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, под­держивая в напряжении иммунную систему. Вероятно также наличие долгоживущих де­ндритных АПК, способных длительно сохра­нять и презентировать антиген.

Другой механизм предусматривает, что в про­цессе развития в организме продуктивного им­мунного ответа часть антигенореактивных Т- или


В-лимфоцитов дифференцируется в малые по­коящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой спе­цифичностью к конкретной антигенной детер­минанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего про­исхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и под­держания его длительное время на защитном уровне. Осуществляют это 2-3-кратными при­вивками при первичной вакцинации и перио­дическими повторными введениями вакцинно­го препарата - ревакцинациями (см. гл. 14).

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быст­рую и бурную реакцию - криз отторжения.

11.6. Иммунологическая толерантность

Иммунологическая толерантность - явле­ние, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии имму­нологическая толерантность предполагает изначальную ареактивность иммунокомпе-тентных клеток к определенному антигену.

Открытию иммунологической толеран­тности предшествовали работы Р. Оуэна (1945), который обследовал разнояйцовых те­лят-близнецов. Ученый установил, что такие животные в эмбриональном периоде обмени­ваются через плаценту кровяными ростками и после рождения обладают одновременно двумя типами эритроцитов - своими и чу­жими. Наличие чужеродных эритроцитов не вызывало иммунную реакцию и не приводило к внутрисосудистому гемолизу. Явление было


названо эритроцитарной мозаикой. Однако Оуэн не смог дать ему объяснение.

Собственно феномен иммунологической то­лерантности был открыт в 1953 г. независимо чешским ученым М. Гашеком и группой англий­ских исследователей во главе с П. Медаваром. Гашек в опытах на куриных эмбрионах, а Медавар - на новорожденных мышатах показа­ли, что организм становится нечувствительным к антигену при его введении в эмбриональном или раннем постнатальном периоде.

Иммунологическую толерантность вызы­вают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогеннос-тью обладают полисахариды.

Иммунологическая толерантность быва­ет врожденной и приобретенной. Примером врожденной толерантности является отсутс­твие реакции иммунной системы на свои собственные антигены. Приобретенную толе­рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммуно-депрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассив­ной. Активная толерантность создается пу­тем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать ве­ществами, тормозящими биосинтетическую или пролиферативную активность иммуно-компетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличает­ся специфичностью - она направлена к строго определенным антигенам. По степени рас­пространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в со­став конкретного антигена. Для расщепленной, или моновалентной, толерантности характер­на избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толе­рантности существенно зависит от ряда свойств макроорганизма и толерогена. Так, на проявление толерантности влияет возраст и состояние имму-


нореактивности организма. Иммунологическую толерантность легче индуцировать в эмбрио­нальном периоде развития и в первые дни после рождения, лучше всего она проявляется у жи­вотных со сниженной иммунореактивностью и с определенным генотипом.

Из особенностей антигена, которые опреде­ляют успешность индукции иммунологичес­кой толерантности, нужно отметить степень его чужеродности для организма и природу, дозу препарата и продолжительность воздейс­твия антигена на организм. Наибольшей толе-рогенностью обладают наименее чужеродные по отношению к организму антигены, имею­щие малую молекулярную массу и высокую гомогенность. Легче всего формируется то­лерантность на тимуснезависимые антигены, например, бактериальные полисахариды.

Важное значение в индукции иммуноло­гической толерантности имеют доза анти­гена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств вы­сококонцентрированного антигена. При этом наблюдается прямая зависимость между до­зой вещества и производимым им эффек­том. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы­сокогомогенного молекулярного антигена. Соотношение «доза-эффект» в этом случае имеет обратную зависимость.

В эксперименте толерантность возникает че­рез несколько дней, а иногда часов после вве­дения толерогена и, как правило, проявляется в течение всего времени, пока он циркулирует в организме. Эффект ослабевает или прекра­щается с удалением из организма толерогена. Обычно иммунологическая толерантность на­блюдается непродолжительный срок - всего несколько дней. Для ее пролонгирования необ­ходимы повторные инъекции препарата.

Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития имму­нологической толерантности:

1. Элиминация из организма антигенспеци-фических клонов лимфоцитов.


2. Блокада биологической активности им-мунокомпетентных клеток.

3. Быстрая нейтрализация антигена анти­телами.

Элиминации, или делеции подвергают­ся, как правило, клоны аутореактивных Т- и В-лимфоцитов на ранних стадиях их онтоге­неза. Активация антигенспецифического ре­цептора (TCR или BCR) незрелого лимфоци­та индуцирует в нем апоптоз. Этот феномен, обеспечивающий в организме ареактивность к аутоантигенам, получил название централь­ной толерантности.

Основная роль в блокаде биологической ак­тивности иммунокомпетентных клеток прина­длежит иммуноцитокинам. Воздействуя на соот­ветствующие рецепторы, они способны вызвать ряд «негативных» эффектов. Например, проли­ферацию Т- и В-лимфоцитов активно тормо­зит (be-ТФР. Дифференцировку ТО-хелпера в Т1 можно заблокировать при помощи ИЛ-4, -13, а в Т2-хелпер - у-ИФН. Биологическая активность макрофагов ингибируется продуктами Т2-хелпе-ров (ИЛ-4, -10, -13, be-ТФР и др.).

Биосинтез в В-лимфоците и его превраще­ние в плазмоцит подавляется IgG. Быстрая инактивация молекул антигена антителами предотвращает их связывание с рецепторами иммунокомпетентных клеток - элиминиру­ется специфический активирующий фактор.

Возможен адаптивный перенос иммуноло­гической толерантности интактному живот­ному путем введения ему иммунокомпетент­ных клеток, взятых от донора. Толерантность можно также искусственно отменить. Для этого необходимо активировать иммунную систему адъювантами, интерлейкинами или переключить направленность ее реакции им­мунизацией модифицированными антиге­нами. Другой путь - удалить из организма толероген, сделав инъекцию специфических антител или проведя иммуносорбцию.

Феномен иммунологической толерантнос­ти имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка ор­ганов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патоло­гических состояний, связанных с агрессив­ным поведением иммунной системы.


Таблица Основные характеристики иммуноглобулинов человека

Характеристика IgM IgG IgA IgD IgE
Молекулярная масса, кДа
Количество мономеров 1-3
Валентность 2-6
Уровень в сыворотке крови, г/л 0,5-1,9 8,0-17,0 1,4- 3,2 0,03- -0,2 0,002-0,004
Период полураспада, сут
Связывание комплемента + ++ ++ - - -
Цитотоксическая активность +++ ++ - - _
Опсонизация + + + + + - -
Преципитация + ++ + - +
Агглютинация + + + + + - +
Участие в анафилактических реакциях + + + - +++
Наличие рецепторов на лимфоцитах + + + + +
Прохождение через плаценту - - + - -
Наличие в секретах в секреторной форме +/- - + - -
Поступление в секреты путем диффузии + + + + +

Таблица 11.3. Классификация аллергических реакции по патогенез [по Джеллу и Кумбсу, 1968]


Тип реакции Фактор патогенеза Механизм патогенеза Клинический пример
III, иммунокомплек- сный (ГНТ) IgM, IgG Образование избытка иммунных комплексов-> Отложение иммунных комплексов на базальных мембранах, эндо­телии и в соединительнотканной строме-> Активация антителозависимой клеточно-опосредованной цито-токсичности -> Запуск иммунного воспаления Сывороточная болезнь, системные заболевания соединительной ткани, феномен Артюса, «легкое фермера»
IV. клеточно-опос- редованный (ГЗТ) Т-лимфоциты Сенсибилизация Т-лимфоцитов-> Активация макрофага-» Запуск иммунного воспаления Кожно-аллергическая проба. контактная аллергия, белковая аллергия за­медленного типа

Периоды образования специфических антител в ответ на введение вакцины (рис. 4):

Рис. 4 . Динамика образования антител при первичном (А-прайминг)
и вторичном (Б-бустерная иммунизация) введении антигена.
Периоды образования специфических антител (А. А. Воробьев и др., 2003):

а - латентный; б - логарифмического роста; в - стационарный; г - снижения

· латентный («лаг»-фаза) - макрофаги перерабатывают антиген, представляют его Т-лимфоцитам, Тh активируют В-лимфоциты, последние превращаются в плазматические антителообразующие клетки, параллельно образуются В-лимфоциты памяти. От введения вакцины до появления антител в сыворотке крови проходит от нескольких суток до 2 недель (время зависит от вида вакцины, способа введения и особенностей
иммунной системы);

· роста («лог»-фаза) - экспоненциальное увеличение количества антител в сыворотке крови продолжительностью от 4 дней до 4 недель;

· стационарный - количество антител поддерживается на постоянном уровне;

· снижения - после достижения максимального титра антител происходит его снижение, причем сначала относительно быстро, а затем медленно. Длительность фазы снижения зависит от соотношения скорости синтеза антител и их полураспада. Когда снижение уровня протективных антител достигает критического, защита падает, и становится возможным заболевание при контакте с источником инфекции. Поэтому для поддержания напряженного иммунитета часто необходимо вводить бустерные дозы вакцины.

Различают первичный и вторичный иммунный ответ организма. Первичный иммунный ответ наблюдается при первичном введении антигена. Вторичный иммунный ответ развивается после повторных контактов системы иммунитета с антигенами.

При первичном иммунном ответе на антиген в основном продуцируются IgM, при вторичном - плазматические клетки переключаются с продукции IgM на более зрелые изотипы и продуцируют антитела классов IgG, IgA или IgE с более высоким сродством к антигену. IgG наиболее полно проходят фазы созревания аффинитета. Они нейтрализуют экзотоксины, активируют комплемент и обладают высоким сродством к Fc-рецепторам всех типов. Нейтрализация и удаление свободных патогенов осуществляется путем их опсонизации и последующего фагоцитоза. IgG являются также важным фактором борьбы с внутриклеточными патогенами. Опсонизируя клетки, IgG делают их доступными для антителозависимого клеточного цитолиза.

Иммунологическая память - способность иммунной системы отвечать на повторный контакт с антигеном быстрее, сильнее и длительнее по сравнению с первичным ответом. Иммунологическая память обеспечивается клетками памяти - длительно живущими субпопуляциями антигенспецифических T- и B-клеток, быстрее реагирующими на повторное введение антигена. Они находятся на стадии G 1 клеточного цикла, т. е. вышли из стадии покоя G 0 и готовы к быстрому превращению в эффекторные клетки при очередном контакте с антигеном.

Иммунологическая память, особенно память Т-лимфоцитов, очень стойкая, благодаря чему удается искусственно формировать длительный противоинфекционный иммунитет. Преобладающее направление развития вторичного иммунного ответа закодировано в субпопуляционной принадлежности Т-клеток памяти и последующей их дифференцировке
в Th1 или Th2.

Вторичный иммунный ответ характеризуется следующими
признаками:

1. Более раннее развитие иммунных реакций по сравнению с первичным ответом.

2. Уменьшение дозы антигена, необходимой для достижения оптимального ответа.

3. Увеличение напряженности и длительности иммунного ответа.

4. Усиление гуморального иммунитета: увеличение количества
антителообразующих клеток и циркулирующих антител, активация Тh2
и усиление выработки ими цитокинов (ИЛ 3, 4, 5, 6, 9, 10, 13), сокращение периода образования IgM, преобладание IgG и IgA.

5. Повышение специфичности гуморального иммунитета в результате феномена «созревания аффинности».

6. Усиление клеточного иммунитета: увеличение числа антигенспецифических Т-лимфоцитов, активация Тh1 и усиление выработки ими цитокинов (γ-интерферона, ФНО, ИЛ2), повышение аффинности антигенспецифических рецепторов Т-лимфоцитов.

Эффективность вторичного иммунного ответа прежде всего зависит от полноценности (достаточной интенсивности) первичного антигенного стимула, длительности интервала между первичным и вторичным введением антигена.

Так как в процессе иммунного ответа основное значение имеют антитела, то в его развитии главная роль принадлежит В-системе лимфоцитов. Определенное значение имеет клеточный иммунитет, в развитии которого основная роль принадлежит Т-системе лимфоцитов.

ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ, способность иммунной системы запоминать первый контакт организма с антигеном и реагировать на его повторное поступление более быстрой и интенсивной реакцией, направленной на его удаление. Субстратом иммунологической памяти являются её В- и Т-лимфоциты, формирующиеся из основных популяций В- и Т-лимфоцитов иммунной системы и отличающиеся от последних антигенраспознающими рецепторами [например, в В-лимфоцитах иммунологической памяти рецепторы представлены преимущественно иммуноглобулинами G (IgG) или А (IgA), а не иммуноглобулинами М или D обычных В-лимфоцитов]; они обладают более высоким сродством к антигену, приобретённому в ходе их развития, а также набором хемокиновых рецепторов и молекул клеточной адгезии. Это определяет различие путей их рециркуляции: если обычные лимфоциты мигрируют из кровотока во вторичные лимфоидные органы (лимфатические узлы, селезёнку, миндалины и другие фолликулярные структуры), то клетки иммунологической памяти - преимущественно в кожу, слизистые оболочки, паренхиматозные органы, особенно в очаги воспаления.

Ускорение и повышение эффективности иммунного ответа при повторном поступлении антигена, индуцировавшего формирование иммунологической памяти, связано с большей численностью клеток в клонах В- и Т-лимфоцитов иммунологической памяти по сравнению с клонами обычных В- и Т-лимфоцитов, «облегчённым» механизмом активации и отсутствием необходимости в прохождении некоторых этапов иммунного ответа. В результате за более короткий срок образуется большее число эффекторных клеток и гуморальных факторов иммунной защиты с более высоким сродством к антигену, что и обеспечивает более высокую результативность иммунного ответа. Продолжительность иммунологической памяти определяется сроком жизни её клеток, которая значительно превышает сроки жизни обычных лимфоцитов и составляет несколько лет. Полагают, что для поддержания жизнеспособности В-лимфоцитов иммунологической памяти требуется присутствие в организме антигена, тогда как численность Т-лимфоцитов иммунологической памяти не зависит от присутствия антигена и поддерживается цитокинами (в частности, интерлейкинами 15 и 7).

Обычно наличие иммунологической памяти эффективно предохраняет организм от развития заболевания при инфицировании или существенно облегчает течение болезни. С формированием иммунологической памяти связана вакцинация против инфекционных заболеваний, при которой введение антигенов возбудителя приводит к образованию клеток иммунологической памяти без развития инфекционного процесса.

Лит. смотри при ст. Иммунитет.

Иммунологическая память - способность иммунной системы организма после первого взаимодействия с антигеном специфически отвечать на его повторное введение. Механизм, лежащий в основе иммунологической памяти, окончательно не установлен. Наряду со специфичностью, иммунологическая память -- важнейшее свойство иммунного ответа.

Позитивная иммунологическая память проявляется как ускоренный и усиленный специфический ответ на повторное введение антигена. При первичном гуморальном иммунном ответе после введения антигена проходит несколько дней (латентный период) до появления в крови антител. Затем наблюдается постепенное увеличение кол-ва антител до максимума с последующим снижением. При вторичном ответе на ту же дозу антигена латентный период сокращается, кривая увеличения антител становится круче и выше, а её снижение происходит медленнее. После стимуляции антигеном происходит пролиферация лимфоцитов (расширение клона), что приводит к образованию большого количества клеток исполнительного звена, а также других малых лимфоцитов, которые повторно входят в митотический цикл и служат для пополнения группы клеток, несущих соответствующий рецептор. Предполагается, что так как эти клетки результат вызванной антигеном пролиферации, то они способны к усиленному ответу при повторной встрече с антигеном (то есть, они действуют как клетки памяти). B семействе В-клеток эти клетки могут также подвергнуться переключению синтеза с IgM на IgG, что объясняет немедленное производство этими клетками IgG во время вторичного иммунного ответа.

Позитивная иммунологическая память к антигенным компонентам окружающей среды лежит в основе аллергических заболеваний, а к резус-антигену (возникает при резус-несовместимой беременности)-- в основе гемолитических болезни новорождённых.

Негативная иммунологическая память -- это естественная и приобретённая иммунологическая толерантность, проявляющаяся ослабленным ответом или его полным отсутствием как на первое, так и на повторное введение антигена. Нарушение негативной иммунологической памяти к собственным антигенам организма является патогенетическим механизмом некоторых аутоиммунных заболеваний.

Иммунологическая память представляет собой разновидность биологической памяти, принципиально отличающуюся от нейрологической (мозговой) памяти по способу её введения, уровню хранения и объёму информации. Иммунологическая память при ответе на разные антигены различна. Она может быть краткосрочной (дни, недели), долговременной (месяцы, годы) и пожизненной. Основные носители иммунологической памяти -- долгоживущие Т- и В-лимфоциты. Из других механизмов иммунологической памяти (кроме клеток памяти) определенное значение имеют иммунные комплексы, цитофильные антитела, а также блокирующие и антиидиотипичные антитела. Иммунологическая память можно перенести от иммунного донора неиммунному реципиенту, переливая живые лимфоциты или вводя лимфоцитарный экстракт, содержащий «фактор переноса» или иммунную РНК. Информационная ёмкость -- до 106--107 бит на организм. У позвоночных включается более 100 бит в сутки. В филогенезе иммунологическая память возникла одновременно с нейрологической памятью. Полной ёмкости иммунологическая память достигает у взрослых животных со зрелой иммунной системой (у новорождённых и старых особей она ослаблена).

основана на
наличии Т- и В-клеток памяти, которые
образуются при первичном введении антигена
(первичном иммунном ответе). Клетки памяти
быстро
пролиферируют
под
влиянием
специфического антигена: появляется большая
популяция эффекторных клеток, увеличивается
синтез антител и цитокинов. За счет клеток
памяти более быстро и эффективно удаляются
повторно введенные антигены (при вторичном
иммунном ответе).

При
вторичном
иммунном
ответе
значительно
возрастает
скорость
образования, количество и аффинность IgG.
Иммунологическая память при некоторых
инфекциях (оспа, корь и др.) может
сохраняться годами и пожизненно.

Феномен
иммунологической памяти широко
используется в практике вакцинации людей
для создания напряженного иммунитета и
поддержания его длительное время на
защитном уровне. Осуществляют это 2-3кратными
прививками
при
первичной
вакцинации и периодическими повторными
введениями
вакцинного
препарата
-
ревакцинациями.
Однако феномен иммунологической памяти
имеет и отрицательные стороны. Например,
повторная попытка трансплантировать уже
однажды
отторгнутую
ткань
вызывает
быструю и бурную реакцию - криз
отторжения.

Иммунологическая
толерантность -
отсутствие иммунного ответа при наличии в
организме
антигенов
(толерогенов),
досгупных
лимфоцитам.
Наиболее
толерогенными являются растворимые
антигены, так как не вызывают у
антигенпрезентирующих клеток экспрессию
соответствующих
костимулирующих
молекул для иммунного ответа.

В
отличие
от
иммуносупрессии
иммунологическая
толерантность
предполагает изначальную ареактивность
иммунокомпетентных
клеток
к
определенному антигену

Иммунологическую
толерантность
вызывают антигены, которые получили
название толерогены. Ими могут быть
практически
все
вещества,
однако
наибольшей толерогенностью обладают
полисахариды.

Иммунологическая
толерантность бывает
врожденной и приобретенной.
Примером
врожденной толерантности
является отсутствие реакции иммунной
системы на свои собственные антигены.

Приобретенную
толерантность можно создать,
вводя в организм вещества, подавляющие
иммунитет (иммунодепрессанты), или же путем
введения антигена в эмбриональном периоде
или в первые дни после рождения индивидуума.
Приобретенная толерантность может быть
активной и пассивной.
Активная
толерантность создается путем
введения в организм толерогена, который
формирует специфическую толерантность.
Пассивную
толерантность можно вызвать
веществами, тормозящими биосинтетическую
или
пролиферативную
активность
иммунокомпетентных
клеток
(антилимфоцитарная сыворотка, цитостатики и
пр.).

Иммунологическая
толерантность отличается
специфичностью - она направлена к строго
определенным
антигенам.
По
степени
распространенности
различают
поливалентную
и
расщепленную
толерантность.
Поливалентная
толерантность возникает
одновременно
на
все
антигенные
детерминанты, входящие в состав конкретного
антигена.
Для
расщепленной, или моновалентной,
толерантности характерна избирательная
невосприимчивость
каких-то
отдельных
антигенных детерминант.

Степень
проявления
иммунологической
толерантности существенно зависит от ряда
свойств макроорганизма и толерогена. Так, на
проявление толерантности влияет возраст и
состояние иммунореактивности организма.

Иммунологическую
толерантность легче
индуцировать в эмбриональном периоде
развития и в первые дни после рождения,
лучше всего она проявляется у животных со
сниженной
иммунореактивностью
и
с
определенным генотипом.

Иммунологическая
толерантность развивается
по следующим направлениям: делеция клона
лимфоцитов,
связавших
антиген
своими
рецепторами и (вместо активации) погибающих
в результате сигнала на апоптоз; анергия клона
лимфоцитов
из-за
отсутствия
активации
лимфоцитов, связавших антиген своими Т- или
В-клеточными рецепторами. Т-лимфоцит не
отвечает на антиген, если при его представлении
у антиген презентирующей клетки не
экспрессируются стимулирующие молекулы В7
(CD8O и CD86).

Важное значение в индукции иммунологической
толерантности
имеют
доза
антигена
и
продолжительность его воздействия.
Различают
высокодозовую и низкодозовую
толерантность.
Высокодозовую
толерантность
вызывают
введением
больших
количеств
высококонцентрированного антигена. При этом
наблюдается прямая зависимость между дозой
вещества и производимым им эффектом.
Низкодозовая
толерантность,
наоборот,
вызывается
очень
малым
количеством
высокогомогенного
молекулярного
антигена.
Соотношение «доза-эффект» в этом случае имеет
обратную зависимость.

Выделяют три наиболее вероятные причины
развития иммунологической толерантности:
Элиминация
из
организма
антигенспецифических клонов лимфоцитов.
Блокада
биологической
иммунокомпетентных клеток.
Быстрая
антителами.
нейтрализация
активности
антигена

Феномен
иммунологической толерантности
имеет большое практическое значение. Он
используется для решения многих важных
проблем медицины, таких как пересадка
органов
и
тканей,
подавление
аутоиммунных реакций, лечение аллергий и
других
патологических
состояний,
связанных с агрессивным поведением
иммунной системы.

Классификация аллергических реакций по патогенезу [по Джеллу и Кумбеу, 1968]

Тип реакции
Фактор
патогенеза
Механизм патогенеза
Клинический
пример
I,
IgE, lgG4
анафилактический (ГНТ)
Образование рецепторного Анафилаксия,
комплекса
IgE
(G4)-FcR анафилактический
тучных
клеток
и шок, поллинозы
базофилов→
Взаимодействие эпитопа
аллергена с рецепторным
комплексом→ Активация
тучных клеток и
базофилов→
Высвобождение медиаторов
воспаления и других
биологически активных
веществ
II,
IgM, IgG
цитотоксически
й (ГНТ)
Выработка цитотоксических
антител→
Активация
антителозависимого
цитолиза
Лекарственная
волчанка,
аутоиммунная
гемолитическая
болезнь,
аутоиммунная
тромбоцитопения

III,
IGM.IRG
иммунокомпле
ксный (ГНТ)
Образование избытка
иммунных комплексов→
Отложение иммунных
комплексов на базалъных
мембранах, эндотелии и в
соединительнотканной
строме→
Активация
антителозависимой
клеточно-опосредованной
цитотоксичности →
Запуск иммунного
воспаления
Сывороточная
болезнь, системные
заболевания
соединительной
ткани, феномен
Артюса, (легкое
фермера»
IV,
Т-лимфоциты
клеточно-опосредованный
(ГЗТ)
Сенсибилизация Тлимфоцитов→
Активация макрофага→
Запуск иммунного
воспаления
Кожноаллергическая
проба,
контактная
аллергия, белковая
аллергия
замедленного типа

На первичный контакт с антигеном организм
отвечает
образованием
антител
и
сенсибилизированных лимфоцитов.
При повторном контакте антиген вступает в
реакцию с антителами и сенсибилизированными
лимфоцитами. Эти реакции направлены на
устранение антигена, но при определенных
условиях могут привести к патологическим
последствиям.

Заболевание возникает лишь при значительном
отклонении иммунореактивности от нормы.
При
повышенном
уровне
индивидуальной
реактивности в отношении данных антигенов речь
идет об аллергии.

Разделение
аллергических реакций на
четыре типа весьма важно с клинической
точки зрения. Следует подчеркнуть, что
различные типы аллергических реакций
редко встречаются в чистом виде; как
правило, они сочетаются или же переходят
одна в другую в ходе заболевания.

. При первичном
контакте с антигеном образуются IgE, которые
прикрепляются Fc-фрагментом и тучный
клеткам и базофилам. Повторно введенный
антиген перекрестно связывается с IgE на
клетках, вызывая их дегрануляцию, выброс
гистамина и других медиаторов аллергии.

. Антиген,
расположенный на клетке «узнается»
антителами классов IgG, IgM. При
взаимодействии типа «клетка-антигенантитело»
происходит
активизация
комплемента и разрушение клетки по трем
направлениям:
комплементзависимый
цитолиз
(А);
фагоцитоз
(Б);
антителозависимая
клеточная
цитотоксичность (В).

Антитела
классов IgG, IgM образуют с растворимыми
антигенами иммунные комплексы, которые
активируют комплемент. При избытке
антигенов или недостатке комплемента
иммунные комплексы откладываются на
стенке сосудов, базальных мембранах, т.е.
структурах, имеющих Fc-рецепторы.

. Этот тип обусловлен
взаимодействием антигена с макрофагами и
Thl-лимфоцитами,
стимулирующими
клеточный иммунитет

Вам также будет интересно:

Вещи во сне не совсем настоящие
Сонник старые вещи Всю жизнь человек окружен определенными вещами. Одни из них дороги нам...
Невзоров а г уроки атеизма
Чтобы я мог посоветовать верующим? Я бы мог посоветовать им чувствовать себя как можно...
Столетняя война: причины, ход и последствия Воины времен
столетней войны
Столетняя война между Англией и Францией самый длительный в истории прошлого военно -...
Кто правил после Елизаветы Петровны?
Елизавета Петровна – российская императрица, ставшая последней представительницей монаршей...
Применение эхинацеи пурпурной в спорте: поддержка иммунитета спортсмена «Эхинацея П»
1. Иммунитет Иммунитет – способность организма поддерживать гомеостаз (постоянство...