Сайт о холестерине. Болезни. Атеросклероз. Ожирение. Препараты. Питание

Очень вкусные рецепты: с томатным соусом, с рисом, в сливочном соусе и как в детском саду

Сонник: к чему снятся овощи

Сонник толкование снов дверь

Планеты на асценденте и мс Марс на асценденте

Формы внутривидовой изоляции

Презентация «Такие разные птицы

Территория фрг.  Германия. Территория Германии: площадь и географическое положение

Презентация к уроку физики Электрические явления в природе презентация к уроку физики (9 класс) на тему Просмотр содержимого презентации «Природные электрические явления»

Салат из говядины отварной

Как приготовить бисквитный торт с фруктами Бисквит с кусочками фруктов

Как испечь немецкий штрудель?

Запеканка в мультиварке творожная с манкой

Замы Министра обороны РФ: имена, звания, достижения Кто руководит и управляет вс рф

Рецепт с курагой Овсяные хлопья с изюмом рецепт

Как приготовить шницель из курицы на сковороде

Гнилостная инфекция: лечение, симптомы и профилактика. Какова роль гнилостных бактерий в природе и жизни человека Гнилостные микроорганизмы

В процессе обмена веществ микроорганизмы не только осуществляют синтез сложных белковых веществ собственной цитоплазмы, но и производят глубокое разрушение белковых соединений субстрата. Процесс минерализации органических белковых веществ микроорганизмами, протекающий с выделением аммиака или с образованием аммонийных солей, получил в микробиологии название гниения или аммонификации белков.

Таким образом, в строгом микробиологическом смысле гниение - это минерализация органического белка, хотя в повседневной жизни «гниением» называют целый ряд разнообразных процессов, имеющих чисто случайное сходство, объединяя в этом понятии и порчу пищевых продуктов (мяса, рыбы, яиц, плодов, овощей), и разложение трупов животных и растений, и разнообразные процессы, протекающие в навозе, растительных отбросах, и т.д.

Аммонификация белка - сложный многоступенчатый процесс. Его внутренняя сущность заключается в энергетических превращениях микроорганизмами аминокислот с использованием их углеродного скелета в синтезе цитоплазменных соединений. В естественных условиях разложение богатых белками веществ растительного и животного происхождения, возбуждаемое различными бактериями, плесенями, актиномицетами, протекает необычайно легко как при широком доступе воздуха, так и в условиях полного анаэробиоза. В связи с этим химизм разложения белковых веществ и природа возникающих продуктов распада могут сильно варьировать в зависимости от вида микроорганизма, химической природы белка, условий протекания процесса: аэрации, влажности, температуры.

При доступе воздуха, например, процесс гниения протекает очень интенсивно, вплоть до полной минерализации белковых веществ - образуется аммиак и даже частично элементарный азот, образуются либо метан, либо углекислый газ, а также сероводород и соли фосфорной кислоты. В анаэробных условиях, как правило, полной минерализации белка не происходит, и часть возникающих (промежуточных) продуктов гниения, имеющих обычно неприятный запах, сохраняется в субстрате, придавая ему тошнотворный запах гниения.

Препятствует аммонификации белков низкая температура. В вечномерзлых слоях земли Крайнего Севера находили, например, трупы мамонтов, пролежавшие десятки тысячелетий, но не подвергшиеся разложению.

В зависимости от индивидуальных свойств микроорганизмов - возбудителей гниения - происходит либо неглубокий распад белковой молекулы, либо глубокое ее расщепление (полная минерализация). Но есть и такие микроорганизмы, которые принимают участие в гниении лишь после того, как в субстрате в результате жизнедеятельности других микробов появляются продукты гидролиза белковых веществ. Собственно «гнилостными» называют тех микробов, которые возбуждают глубокий распад белковых веществ, обусловливая полную их минерализацию.

Белковые вещества в процессе питания не могут быть непосредственно усвоены микробной клеткой. Коллоидная структура белков препятствует их поступлению в клетку через клеточную оболочку. Лишь после гидролитического расщепления более простые продукты гидролиза белков проникают внутрь микробной клетки и используются ею в синтезе клеточного вещества. Таким образом, гидролиз белков протекает вне тела микроба. Микроб для этого выделяет в субстрат протеолитические экзоферменты (протеиназы). Такой способ питания обусловливает в субстратах разложение огромных масс белковых веществ, тогда как внутри микробной клетки в белковую форму превращается лишь сравнительно небольшая часть продуктов гидролиза белка. Процесс расщепления белковых веществ в данном случае в большой степени преобладает над процессом их синтеза. В силу этого общебиологическая роль гнилостных микробов как агентов разложения белковых веществ огромна.

Механизм минерализации сложной белковой молекулы гнилостными микробами можно представить следующей цепью химических превращений:

I. Гидролиз крупной белковой молекулы до альбумоз, пептонов, полипептидов, дипептидов.

II. Продолжающийся более глубокий гидролиз продуктов расщепления белка до аминокислот.

III. Превращения аминокислот под действием микробных ферментов. Разнообразие аминокислот и ферментов, имеющихся в ферментативном комплексе различных микробов, те или иные условия протекания процесса обусловливают и чрезвычайное химическое разнообразие продуктов превращения аминокислот.

Так, аминокислоты могут подвергаться декарбоксилированию, дезаминированию как окислительному, так и восстановительному и гидролитическому. Энергичная карбоксилаза вызывает декарбоксилирование аминокислот с образованием летучих аминов или диаминов, имеющих тошнотворный запах. Из аминокислоты лизина при этом образуется кадаверин, из аминокислоты орнитина - путресцин:

Кадаверин и путресцин получили название «трупных ядов» или птомаинов (от греческого ptoma - труп, падаль). Ранее считалось, что птомаины, возникающие при распаде белков, вызывают пищевые отравления. Однако в настоящее время выяснено, что ядовитыми являются не сами птомаины, а сопутствующие им их производные - нейрин, мускарин, а также некоторые вещества неизвестной химической природы.

При дезаминировании от аминокислот отщепляется аминогруппа (NH2), из которой образуется аммиак. Реакция субстрата при этом становится щелочной. При окислительном дезаминировании, кроме аммиака, образуются еще и кетонокислоты:

При восстановительном дезаминировании возникают предельные жирные кислоты:

Гидролитическое дезаминирование и декарбоксилирование приводят к возникновению спиртов:

Кроме того, могут образоваться при этом и углеводороды (например, метан), непредельно жирные кислоты, водород.

Из ароматических аминокислот в анаэробных условиях возникают дурнопахнущие продукты гниения: фенол, индол, скатол. Индол и скатол образуются обычно из триптофана. Из аминокислот, содержащих серу, в аэробных условиях гниения возникают сероводород или меркаптаны, также обладающие неприятным запахом тухлых яиц. Сложные белки - нуклеопротеиды - распадаются на нуклеиновые кислоты и белок, которые в свою очередь расщепляются. Нуклеиновые кислоты при распаде дают фосфорную кислоту, рибозу, дезоксирибозу и азотистые органические основания. В каждом конкретном случае возможно протекание только части указанных химических превращений, а не полностью всего цикла.

Появление в пищевых продуктах, богатых белком (таких, как мясо или рыба), запаха аммиака, аминов и других продуктов распада аминокислот является показателем их микробной порчи.

Микроорганизмы, возбуждающие аммонификацию белковых веществ, очень широко распространены в природе. Они встречаются повсеместно: в почве, в воде, в воздухе - и представлены чрезвычайно разнообразными формами - аэробными и анаэробными, факультативноанаэробными, спорообразующими и бесспорозыми.

Аэробные гнилостные микроорганизмы

Сенная палочка (Bacillus subtilis) (рис. 35) - широко распространенная в природе аэробная бацилла, обычно выделяемая из сена, очень подвижная палочка (3-5 х 0,6 мкм) с перитрихиальным жгутованием. Если выращивание производить на жидких средах (например, на сенном отваре), то клетки бациллы получаются несколько крупнее и соединяются в длинные цепочки, образуя на поверхности жидкости морщинистую и сухую серебристо-беловатую пленку. При развитии на твердых средах, содержащих углеводы, образуется мелкоморщинистая сухая или зернистая, срастающаяся с субстратом колония. На ломтиках картофеля колонии сенной палочки всегда получаются слегка морщинистыми, бесцветными или слегка розоватыми, напоминающими бархатистый налет.

Развивается сенная палочка в очень широком диапазоне температур, являясь практически космополитом. Но вообще считается, что наилучшей температурой для ее развития является 37-50 °С. Споры у сенной палочки овальные, располагаются эксцентрально, без строгой локализации (но все же во многих случаях ближе к центру клетки). Прорастание спор экваториальное. Грамположительна, углеводы разлагает с образованием ацетона и уксусного альдегида, обладает очень высокой протеолитической способностью. Споры сенной палочки весьма термоустойчивы - нередко сохраняются в консервах, стерилизованных при 120°С.

Картофельная палочка (Bac. mesentericus) (рис. 36) - распространена в природе не менее широко, чем сенная. Обычно картофельная палочка встречается на картофеле, попадая сюда из почвы.

Морфологически картофельная палочка очень сходна с сенной: ее клетки (3-10 х 0,5-0,6 мкм) имеют перитрихиальное жгутование; встречаются как одиночные, так и соединенные в цепочку. Споры картофельной палочки, как и сенной, овальные, иногда встречаются продолговатые, крупные; располагаются они в любой части клетки (но чаще центрально). При формировании спор клетка не раздувается, споры прорастают экваториально.

При выращивании на ломтиках картофеля картофельная палочка образует обильный желтовато-бурый складчатый влажно блестящий налет, напоминающий брыжейку, благодаря чему микроб и получил свое название. На агаровых белковых средах образует тонкие, сухие и морщинистые колонии, не срастающиеся с субстратом.

По Граму картофельная палочка окрашивается положительно. Оптимальная температура развития, как и у сенной палочки, 35-45 °С. При разложении белков образует много сероводорода. Споры картофельной палочки очень термоустойчивы и подобно спорам сенной палочки выдерживают длительное кипячение, часто сохраняясь в консервированных продуктах.

Bac. сеreus. Это - палочки (3-5 х 1-1,5 мкм) с прямыми концами, одиночные или соединенные в запутанные цепочки. Встречаются варианты и с более короткими клетками. Цитоплазма клеток заметно зернистая или вакуолистая, по концам клеток часто образуются блестящие жироподобные зерна. Клетки бациллы подвижные, с перитрихиальным жгутованием. Споры Вас. cereus образует овальные или эллипсоидные, обычно располагающиеся центрально и прорастающие полярно. При развитии на МПА (мясопептонном агаре) бацилла образует крупные компактные колонии со складчатым центром и ризоидными волнистыми краями. Иногда колонии бывают мелкобугристыми с бахромчатыми краями и жгутиковидными выростами, с характерными крупинками, преломляющими свет. Bac. cereus является аэробом. Однако в некоторых случаях развивается и при затрудненном доступе кислорода. Встречается эта бацилла в почве, в воде, на растительных субстратах. Желатину разжижает, молоко пептонизирует, крахмал гидролизует. Температурный оптимум развития Bac. cereus 30 °С, максимум 37-48 °С. При развитии в мясопептонном бульоне образует обильную однородную муть с легко распадающимся мягким осадком и нежной пленкой на поверхности.

Из других аэробных гнилостных микробов можно отметить земляную палочку (Вас. mycoides), Вас. megatherium, а также бесспоровые пигментные бактерии - «чудесную палочку» (Bact. prodigiosum), Pseudomonas fluorescens.

Земляная палочка (Bac. mycoides) (рис. 37) - одна из очень распространенных гнилостных почвенных бацилл, имеет довольно крупные (5-7 х 0,8-1,2 мкм) одиночные или соединенные в длинные цепочки клетки. На твердых средах земляная палочка образует весьма характерные колонии - пушистые, ризоидные или мицелиевидные, стелющиеся по поверхности среды, как грибной мицелий. За это сходство бацилла и получила название Bac. mycoides, что значит «грибовидная».

Bac. megaterium - бацилла, имеющая крупные размеры, за что и получила свое название, означающее «большое животное». Она постоянно встречается в почве и на поверхности гниющих материалов. Молодые клетки обычно толстые - до 2 мкм в поперечнике, длиной от 3,5 до 7 мкм. Содержимое клеток грубозернистое с большим количеством крупных включений жироподобного или гликогеноподобного вещества. Нередко включения заполняют почти сплошь всю клетку, придавая ей весьма характерное строение, по которому легко распознают данный вид. Колонии на агаровых средах гладкие, грязно-белые, жирно-блестящие. Края колонии резко обрезаны, иногда волнисто-бахромчатые.

Пигментная бактерия Pseudomonas fluorescens мелкая (1-2 х 0,6 мкм) грамотрицательная бесспоровая палочка, подвижная, с лофотрихиальным жгутованием. Бактерия образует зеленовато-желтый флюоресцирующий пигмент, который, проникая в субстрат, окрашивает его в желто-зеленый цвет.

Пигментная бактерия Bacterium prodigiosum (рис. 38) широко известна под названием «чудесная палочка» или «палочка чудесной крови». Очень маленькая грамотрицательная бесспоровая подвижная палочка с перитрихиальным жгутованием. При развитии на агаровых и желатиновых средах образует колонии темно-красного цвета с металлическим блеском, напоминающие капли крови.

Появление таких колоний на хлебе и картофеле в средние века вызывало у религиозных людей суеверный ужас и связывалось с злокознями «еретиков» и «дьявольским наваждением». Из-за этой безвредной бактерии святейшая инквизиция сожгла на кострах не одну тысячу совершенно невинных людей.

Факультативноанаэробные бактерии

Палочка протея, или вульгарный протей (Proteus vulgaris) (рис. 39). Этот микроб является одним из наиболее типичных возбудителей гниения белковых веществ. Он часто встречается на самопроизвольно загнившем мясе, в кишечнике животных и человека, в воде, в почве и пр. Клетки этой бактерии отличаются большой полиморфностью. В суточных культурах на мясо- пептонном бульоне они мелкие (1-3 х 0,5 мкм), с большим количеством перитрихиально расположенных жгутиков. Затем начинают появляться извитые нитевидные клетки, достигающие в длину 10-20 мкм и более. Благодаря такому разнообразию в морфологическом строении клеток бактерия и была названа по имени морского бога Протея, которому древнегреческая мифология приписывала способность менять свой образ и превращаться по желанию в различных животных и чудовищ.

Как мелкие, так и крупные клетки протея обладают сильным движением. Это придает колониям бактерии на твердых средах, характерную особенность «роения». Процесс «роения» заключается в том, что из колонии выходят отдельные клетки, скользят по поверхности субстрата и на некотором расстоянии от нее останавливаются, размножаются, давая начало новому росту. Получается масса мелких, едва видимых простым глазом беловатых колоний. От этих колоний снова отделяются новые клетки и на свободной от микробного налета части среды образуют новые центры размножения и т.д.

Вульгарный протей - грамотрицательный микроб. Оптимальная температура его развития 25-37°С. При температуре около 5 °С он прекращает свой рост. Протеолитическая способность протея очень велика: он разлагает белки с образованием индола и сероводорода, вызывая резкое изменение кислотности среды - среда становится сильнощелочной. При развитии на углеводных средах протей образует много газов (CO2 и H2).

В условиях умеренного доступа воздуха при развитии на пептонных средах некоторой протеолитической способностью обладает кишечная палочка (Escherichia coli). Характерно при этом образование индола. Но кишечная палочка не является типичным гнилостным микроорганизмом и на углеводных средах в анаэробных условиях вызывает нетипичное молочнокислое брожение с образованием молочной кислоты и целого ряда побочных продуктов.

Анаэробные гнилостные микроорганизмы

Clostridium putrificum (рис. 40) - энергичный возбудитель анаэробного разложения белковых веществ, осуществляющий это расщепление с обильным выделением газов - аммиака и сероводорода. Cl. putrificum довольно часто встречается в почве, воде, в полости рта, в кишечнике животных и на разных гниющих продуктах. Иногда может быть обнаружен и в консервах. Cl. putrificum - подвижные палочки с перитрихиальным жгутованием, удлиненные и тонкие (7-9 х 0,4-0,7 мкм). Встречаются и более длинные клетки, соединенные в цепочки и одиночные. Температурный оптимум развития клостридия 37 °С. Развиваясь в глубине мясопептонного агара, он образует хлопьевидные рыхлые колонии. Споры шаровидные, расположены терминально. При спорообразовании в месте возникновения споры клетка сильно раздувается. Спороносящие клетки Cl. putrificum напоминают спороносящие клетки бациллы ботулизма.

Термоустойчивость спор Cl. putrificum довольно высокая. Если при производстве консервов споры не будут уничтожены, при хранении готовой продукции на складе они могут развиться и вызвать порчу (микробиологический бомбаж) консервов. Сахаролитическими свойствами Cl. putrificum не обладает.

Clostridium sporogenes (рис. 41) - по морфологическим признакам представляет собой довольно крупную палочку с закругленными концами, легко образующую цепочки. Микроб очень подвижен благодаря перитрихиально расположенным жгутикам. Название Clostridium sporogenes, данное И. И. Мечниковым (1908 г.), характеризует способность этого микроба быстро образовывать споры. Через 24 ч под микроскопом можно видеть много палочек и свободно лежащих спор. Через 72 ч процесс спорообразования заканчивается и вегетативных форм совсем не остается. Споры микроб образует овальные, расположенные центрально или ближе к одному из концов палочки (субтерминально). Капсул не образует. Оптимум развития 37 °С.

Cl. sporogenes - анаэроб. Токсическими и патогенными свойствами не обладает. В анаэробных условиях на агаровых средах образует поверхностные мелкие, неправильной формы, вначале прозрачные, а затем превращающиеся в непрозрачные желтовато-белые колонии с бахромчатыми краями. В глубине агара колонии образуются «мохнатые», круглые, с плотным центром. Аналогично в анаэробных условиях микроб вызывает быстрое помутнение мясопептонного бульона, газообразование и появление неприятного гнилостного запаха. В ферментативном комплексе Clostridium sporogenes содержатся очень активные протеолитические ферменты, способные расщеплять белок, до последней его стадии. Под действием Clostridium sporogenes молоко пептонизируется уже через 2-3 дня и рыхло свертывается, желатина разжижается. На средах с печенью иногда образуется черный пигмент с выделяющимися белыми кристаллами тирозина. Микроб вызывает почернение и переваривание мозговой среды и резкий гнилостный запах. Кусочки ткани быстро перевариваются, разрыхляются и расплавляются почти до конца в течение нескольких дней.

Clostridium sporogenes обладает также и сахаролитическими свойствами. Распространенность этого микроба в природе, резко выраженные протеолитические свойства, высокая термоустойчивость спор характеризуют его как одного из главных возбудителей гнилостных процессов в пищевых продуктах.

Cl. sporogenes является возбудителем порчи мясных и мясо-овощных консервов. Чаще всего подвергаются порче консервы «Мясо тушеное» и первые обеденные блюда с мясом и без мяса (борщ, рассольник, щи и др.). Наличие небольшого количества спор, оставшихся в продукте после стерилизации, может вызвать порчу консервов при хранении в условиях комнатной температуры. Наблюдается сначала покраснение мяса, затем почернение, появляется резкий гнилостный запах, при этом часто наблюдается бомбаж банок.

В гнилостном разложении белков принимают участие и различные плесневые грибы и актиномицеты - Penicillium, Mucor mucedo, Botrytis, Aspergillus, Trichoderma и др.

Значение процесса гниения

Общебиологическое значение процесса гниения огромно. Гнилостные микроорганизмы являются «санитарами земли». Вызывая минерализацию громадного количества белковых веществ, попадающих в почву, осуществляя разложение трупов животных и растительных отбросов, они производят биологическую очистку земли. Глубокое расщепление белков вызывают споровые аэробы, менее глубокое - споровые анаэробы. В природных условиях этот процесс совершается поэтапно в содружестве многих видов микроорганизмов.

Но в пищевом производстве гниение является вредным процессом и наносит большой материальный ущерб. Порча мяса, рыбы, овощей, яиц, фруктов и других продуктов питания наступает быстро и протекает очень энергично, если хранить их незащищенными, в условиях, благоприятных для развития микробов.

Лишь в отдельных случаях в пищевом производстве гниение может быть использовано как полезный процесс - при созревании соленой сельди и сыров. Используется гниение в кожевенном производстве для швицевания шкур (удаление шерсти со шкур животных при выработке кож). Зная причины процессов гниения, люди научились защищать пищевые продукты белкового происхождения от их распада путем применения самых разнообразных методов консервирования.

Оказывается, у гнилостных бактерий , как вообще у многих бактерий, имеются органы движения, знакомые уже нам жгутики, при посредстве которых они могут самостоятельно передвигаться.

Как ни благодетельствуют нас эти наши друзья, без которых самая жизнь наша была бы невозможна, однако, надо быть с ними настороже; все бактерии коварны. В то время как тело животного только что начало разлагаться и еще нисколько не напоминает собой порченного мяса, в нем могут под влиянием бактерий образоваться страшные яды, унесшие в могилу немало людей, съевших такое ядовитое мясо. Особенно часты случаи отравления так называемым рыбным ядом, который при страшной силе действия на организм, ничем не выдает своего присутствия. При дальнейшем тлении трупов, эти яды сами разлагаются и исчезают.

Животное уже при жизни выбрасывает значительное количество воспринятых питательных элементов в виде кала и мочи. Все эти отбросы также перерабатываются микробами и минерализируются, после чего могут служить пищей для растений. Уже выше было сказано, что в кишечнике человека и животных имеется колоссальное количество бактерий. Они разлагают гнилостными процессами каловые массы уже внутри тела, а затем довершают разложение после того, как они извергнуты наружу.

Когда мы отвозим навоз в поле, мы часто не знаем, что это удобрение становится доступным для наших культурных растений только после переработки его микробами, незаметными кормильцами растений. Значительная часть азота, принятого в пищу животным, выделяется в виде мочи.

Азот - самый ценный для растений элемент, которого они жадно ищут повсюду и с которым обходятся крайне бережно. И вот, азот мочи становится доступным для растений, благодаря особому виду бактерий, производящих брожение мочи, открытое Пастером. Эти оригинальные химики разлагают главную составную часть мочи человека, мочевину, на углекислый газ и аммиак, производя таким образом, ее полную минерализацию. А воспринятый растениями азот аммиака переходит в них в такие питательные вещества, которые поддерживают жизнь животных и человека. Таким образом, бактерии брожения мочи также являются нашими благодетелями.

Безазотистые органические вещества, количество которых особенно велико в растениях, после смерти организма разлагаются прежде всего в громадных количествах в процессах спиртового, молочнокислого и маслянокислого брожения.

Дрожжи, поселяющиеся всегда там, где имеется запас сахара, на оболочках всех плодов, на ягодах винограда и других растений, только и ждут возможности проникнуть внутрь плода и вызвать там массовое разложение сахара с образованием спирта и углекислого газа. Образовавшийся спирт подхватывается сопровождающими дрожжи бактериями уксуснокислого брожения, которые превращают спирт в уксусную кислоту, то есть частично сжигая его. Те же самые бактерии при недостатке спирта действуют дальше и сжигают уксусную кислоту до углекислого газа и воды, но чаще это довершение минерализации сахара производят другие бактерии, не представляющие собой таких узких специалистов как возбудители разных брожений и обеспечивающие себе существование своей неприхотливостью и способностью при дыхании сжигать самое плохое топливо. Совокупность всех только что описанных работ микробов превращает сахар в минеральные продукты - углекислый газ и воду.

Другой путь минерализации безазотистого вещества, имеющий колоссальное распространение в природе, ведет через маслянокислое брожение. Бактерии, производящие это брожение, принадлежат к различным видам.

Поэтому то при брожении виноградного сока можно не прибавлять искусственно дрожжей.

В недрах сырой земли, на дне болот, в топях ила, всюду, куда не проникает живительный луч солнца, где царит мрак и смрад, неустанно работает могучий маслянокислый микроб и количество разложенного им материала значительно превышает те массы растительного происхождения, которые перерабатывает человек в своей технике. Если в искусственной культуре дать микробу хорошо подходящие ему условия, то из сосуда будет течь непрерывная струя газа, результат великолепной химической работы бактерии. Газ состоит из углекислоты и горючего водорода. В несколько минут мы можем набрать полный большой баллон этих газов и в природе такой процесс идет в необъятных размерах, не останавливаясь ни днем, ни ночью. Изумительные работники не знают ни минуты отдыха. Как жалка по своим размерам вся фабрично-заводская техника человечества по сравнению с гигантским размахом химического производства, идущего в природе при содействии различных микробов брожений. II с какой легкостью работают микроорганизмы спиртового и маслянокислого брожений. Как будто ничего не может быть проще превращения сахара и других безазотистых соединений в различные газы и кислоты, или спирты. А между тем, мы, люди, несмотря на все старания, пока еще не в состоянии произвести этих явлений в наших богато обставленных химических лабораториях, хотя бы в малом размере. Мы можем только изумляться…и учиться у бесконечно малых существ. Мы не будем рассматривать здесь всех брожений, число которых весьма велико, мы только познакомимся с парой примеров разрушения крайне прочных веществ, прежде всего с брожением клетчатки. Клетчатка представляет собой вещество, из которого построен остов, скелет растений. Она составляет главную массу тела крупных растений, особенно деревьев и, несомненно, по своей массе стоит на первом месте среди всех горючих органических веществ на земле. В химическом отношении клетчатка замечательна тем, что без нагревания почти не поддается действию самых едких жидкостей и почти ни в чем не растворяется. Даже крепкие кислоты и щелочи не растворяют клетчатки при обыкновенной температуре. Очищенная вата, лучшие сорта пропускной (фильтровальной) бумаги представляют собой почти химически-чистую клетчатку. Бумага непрочна и легко разрывается только потому, что представляет собой войлок тончайших нитей. Если, однако, спаять все эти нити в одну сплошную массу, то получается весьма прочный материал; в Америке такую клетчатку применяют для выделки вагонных шин и других предметов, требующих большой прочности. Древесина представляет собой слегка измененную клетчатку, пропитанную некоторыми веществами, придающими ей большую хрупкость, меньшую гибкость и прочность, но за то также способность всасывать в себя больше воды.

После смерти растения белковые и другие питательные вещества, из которых состоит их живое тело, быстро уничтожаются различными микроорганизмами, а остов, состоящий из клетчатки, остается в течение долгого времени нетронутым, так как вследствие своей прочности легко противостоит натиску мелких живых существ. Всякий, кому приходилось гулять по буковому или дубовому лесу, не мог не обратить внимания на толстый упругий ковер сухих листьев, в которых тонет нога и который накапливается в течение нескольких лет. Это все остовы листьев, состоящие из клетчатки. Однако, с течением времени и клетчатка исчезает, разрушается и переходит в простейшие минеральные соединения. Солома в навозе, также состоящая из клетчатки, при благоприятных условиях также истлевает и уничтожается каким-то способом, который долгое время оставался таинственным. В настоящее время мы знаем, что существуют некоторые бактерии, способные производить брожение клетчатки. Их обнаружить можно так: приготовив раствор необходимых для микробов минеральных солей, прибавляют к нему в качестве питательного материала только нарезанную полосками фильтровальную бумагу и заражают такую жидкость крошечным кусочком навоза. В навозе имеется огромное разнообразие микробов, но почти ни один из них не развивается из-за недостатка пищи. Кормиться одной только бумагой не под силу даже неприхотливым бактериям. Прекрасно чувствуют себя лишь специалисты по сбраживанию клетчатки; они разъедают бумагу и производят брожение, с выделением газов, от которых бумага всплывает на поверхность, увлекаемая током пузырьков. Этот процесс имеет, конечно, колоссальное значение в круговороте веществ: благодаря ему органическое вещество, находившееся в огромном количестве в форме, недоступной для обыкновенных живых существ, минерализируется и снова становится им доступно.

Какова же должна быть мощность тех химических средств, которыми располагают удивительные микробы, так легко и бурно разлагающие такой прочный материал! Еще один случай, наводящий химика на глубокие размышления о том, как бы выведать у бесконечно малых их секрет и применить его в широких размерах на пользу науки и техники.

Существуют в природе и другие способы массовой переработки клетчатки, а также иных близких к ней веществ. При этом происходит как бы медленное тление, сопровождаемое обугливанием. Так накопились огромные массы торфа и каменного угля, фундамент современной техники. Когда эти залежи будут истреблены, промышленность должна будет либо сойти на нет, либо обратиться за помощью к науке, в поисках нового источника энергии. И, по всем видимостям, такой момент должен в конце концов наступить.

Само собой разумеется, что работа всех описанных микроорганизмов, вызывающих брожения, полезна человеку только по случайному совпадению. По существу бактерии направляют свою деятельность на разложение веществ сложного состава, из которых образуются более простые. Это и составляет общий принцип, их деятельности. В некоторых отдельных случаях такое разложение вещества может быть, наоборот, вредно для человека потому, что оно разрушает продукты его техники. Так, например, уксуснокислое брожение может причинить большие убытки, если оно разовьется само собой в ценных напитках, содержащих спирт. Маслянокислое брожение, столь необходимое в природе, весьма нежелательно в том случае, если оно разойдется в пищевых продуктах.

Всегда вредна и нежелательна для человека деятельность некоторых грибков, разрушающих древесину. Из них особой известностью пользуется один вид так называемого домового гриба. Он превращает постройки, особенно сооруженные из сырого дерева, в мягкую труху; это явление сопряжено с растворением клетчатки, которое гриб производит, повидимому, с большой легкостью, так же, как бактерии, с которыми мы только что познакомились, но никакого брожения клетчатки с выделением газов домовый гриб, повидимому, не вызывает. Вследствие тайной работы этого неустанного вредителя, разрушено много деревянных домов и других построек.

Брожение селитры представляет собой очень нежелательное и невыгодное для земледельца явление. Азот в почве часто находится в недостаточном количестве, а потому земледельцу приходится дорожить им больше, чем всеми другими питательными элементами в земле; урожай главным образом зависит от азотного питания растений. Из всех форм, в которых может оказаться азот в почве, наиболее пригодна для растений селитра; не даром ее привозят в огромных количествах из Южной Америки и употребляют в качестве удобрения. Целый ряд бактерий разлагает в почве селитру, пользуясь этим процессом для добывания жизненной энергии. При бактериальном брожении селитры весь азот улетает в воздух и становится недоступным для растении. Таким образом, коварный микроб не только лишает азотного питания другие более высоко организованные растения, но при этом и сам то азотом селитры не пользуется, а только уменьшает и без того небольшие запасы полезного азота в почве.

Все микроорганизмы, вызывающие брожения, почти никогда не производят полной минерализации органического вещества. Они ограничиваются тем, что более сложно составленные соединения разлагают на более простые. Но целая армия других микробов сразу же нападает на продукты брожения и довершает превращение их в простейшие, так называемые минеральные вещества, уже не способные дальше разлагаться с выделением тепла. Все эти организмы, сопровождающие бродильных микробов на подобие того, как шакалы следуют за львом, чтобы доедать остатки его трапезы, чаще всего бывают неприхотливы и неразборчивы в выборе питания. Они не производят строго-специализированных брожений, но они сжигают при своем дыхании разнообразные вещества, на которые среди более разборчивых организмов нашлось бы мало охотников. В общей работе минерализации сложных веществ они играют не показную роль, но они совершенно необходимы для завершения этого важного процесса.

Однако и среди таких микробов, которые производят не брожения, а сжигания простых соединений, встречаются некоторые узкие специалисты, работа которых незаменима и бросается в глаза своей оригинальностью. Чудеса, открытые микробиологией, были бы недостаточно описаны, если бы мы не обратили наше внимание на подобного рода работников, которым мы в первую голову обязаны обеспечением постоянства жизни на земле.

С тех пор, как великий французский химик Лавуазье открыл закон вечности материи, мы знаем, что количество каждого основного простейшего вещества на нашей планете неизменно и определенно. Поэтому, если такое вещество необходимо для построения тела животных и растений, оно неизбежно должно после смерти этих живых существ переходить в такую форму, в которой может быть снова использовано растениями в качестве питательного материала. От растений оно с пищей будет передано животным, после смерти как тех, так и других организмов снова попадет в почву и будет непрерывно совершать все тот же круговорот. Таким образом, ограниченное, строго определенное количество одного физиологически-важного элемента, благодаря круговороту, может поддерживать жизнь животных и растений в течение бесконечно долгого времени, на подобие того, как ограниченное количество денежных знаков при непрерывном круговороте их из казны в частные руки и обратно, может в течение неопределенно долгого времени поддерживать товарообмен в государстве.

Они являются основными возбудителями порчи молочных продуктов, вызывают распад белков (протеолиз), в результате чего могут возникать различные пороки пищевых продуктов, зависящие от глубины распада белка. Антагонистами гнилостных являются молочнокислые бактерии, поэтому гнилостный процесс распада продукта возникает там, где не идет кисломолочный процесс.

Протеолиз (протеолитические свойства) изучают посевом микроорганизмов в молоко, молочный агар, мясопептонный желатин (МПЖ) и в свернутую кровяную сыворотку.

Свернувшийся белок молока (казеин) под влиянием протеолитических ферментов может свертываться с отделением сыворотки (пептонизация) или растворяться (протеолиз).

На молочном агаре вокруг колоний протеолитических микроорганизмов образуются широкие зоны просветления молока.

В МПЖ посев производят уколом внутрь столбика среды. Посевы выращивают 5-7 сут при комнатной температуре. Микробы, обладающие протеолитическими свойствами, разжижают желатин. Микроорганизмы, не обладающие протеолитической способностью, растут в МПЖ без его разжижения.

В посевах на свернутой кровяной сыворотке протеолитические микроорганизмы также вызывают разжижение, а микробы, не обладающие этим свойством, не изменяют ее консистенцию.

При изучении протеолитических свойств определяют также способность микроорганизмов образовывать индол, сероводород, аммиак, т. е. расщеплять белки до конечных газообразных продуктов.

Гнилостные бактерии имеют очень широкое распространение. Они встречаются в почве, воде, воздухе, кишечнике человека и животных, на пищевых продуктах. К этим микроорганизмам относятся спорообразующие аэробные и анаэробные палочки, пигментообразующие и факультативно-анаэробные бесспоровые бактерии.

Спорообразующие. К гнилостным аэробам относятся Вас. subtilis -сенная палочка, Вас. mesentericus - картофельная палочка, Вас. megatherium - капустная палочка, Вас. mycoides - грибовидная палочка, Вас. cereus и др.

К спорообразующим гнилостным анаэробам относятся бактерии рода Clostridium (Cl. putrificum, Cl. sporogenes, Cl. perfringens и другие виды).

Спорообразующие аэробы и анаэробы относятся к одному семейству Васillасеае.

Все спорообразующие гнилостные представляют собой довольно крупные толстые палочки, достигающие размеров 0,5-2,5 х 10 (у клостридий - до 20) мкм, по Граму красятся положительно, подвижные до момента спорообразования, капсул не образуют. Исключение составляет Cl. perfringens - неподвижная, образующая капсулы палочка. Клетки располагаются беспорядочно, у Вас. cereus и Вас. mycoides -цепочками

Наиболее короткими являются клетки сенной палочки. У бацилл споры располагаются, как правило, центрально, у клостридий -субтерминально. Последние чаще имеют вид теннисной ракетки, ложки или лодочки. У Cl. sporogenes почти все клетки содержат споры (рис. 29). Клетки Cl. perfringens, как правило, спор не содержат и располагаются часто в виде частокола или римской цифры V.

Спорообразующие аэробы хорошо растут на обычных питательных средах. На МПБ они вызывают помутнение среды, часто - образование пленки и хлопьевидного осадка. Вас. cereus помутнения не вызывает, а образует незначительный осадок, поднимающийся при встряхивании пробирки в виде облачка или комочка ваты.

Рисунок 29 ‑ Спорообразующие гнилостные: Вас. subtilis: а - колонии; б - клетки; Вас. mycoides: в - колонии; г - клетки; Cl. sporogenes: д - колонии; е - клетки

Вас. subtilis формирует поверхностную морщинистую беловатую пленку.

На МПА аэробные бациллы вырастают в виде крупных колоний серовато-белого цвета. Вас. mycoides образует корневидные колонии, напоминающие мицелий гриба, откуда и происходит название палочки (от греч. myces - гриб) (рисунок29). Некоторые штаммы этого микроорганизма выделяют коричневый или розово-красный пигмент. Бурый или коричневый пигмент могут выделять также штаммы Вас. mesentericus.

Вас. subtilis формирует сухие морщинистые беловатые колонии. Колонии Вас. cereus под малым увеличением микроскопа имеют локонообразный край или вид головы медузы.

Спорообразующие анаэробы выращивают на специальных питательных средах - мясо-пептонном печеночном бульоне (МППБ), среде Китта-Тароцци, а также на глюкозо-кровяном агаре. Они вызывают помутнение бульона, на агаре образуют округлые мелкие колонии с зоной гемолиза, т. е. просветления - растворения эритроцитов крови.

Спорообразующие обладают хорошо выраженными протеолитическими свойствами: разжижают желатин, свертывают и пептонизируют молоко, вызывают гемолиз, выделяют аммиак, сероводород, а анаэробы выделяют еще и индол. Способны ферментировать многие углеводы, за исключением Cl. putrificum, который не обладает сахаролитическими свойствами.

Бесспоровые. Включают пигментообразующие и факультативно-анаэробные бактерии. К пигментным гнилостным относят Pseudomonas fluorescens, Ps. aeruginosa (семейство Pseudomonadaceae), Serratia marcescens (семейство Enterobacteriaceae) (соответственно флюоресцирующая, синегнойная и чудесная палочки). Группу факультативно-анаэробных бактерий составляют Proteus vulgaris (палочка протея) и кишечная палочка рода эшерихия (Escherichia coli) (семейство Enterobacteriaceae).

Бесспоровые гнилостные представляют собой мелкие (1-2 х 0,6 мкм) грамотрицательные подвижные палочки, не образующие спор и капсул. Клетки располагаются беспорядочно. Наиболее короткими коккобактериями являются клетки чудесной палочки. Палочка протея имеет полиморфные клетки (рисунок 30).

Бесспоровые палочки являются в основном мезофилами. Бактерии рода Pseudomonas часто могут быть психрофилами. Микроорганизмы хорошо растут на обычных питательных средах. На МПБ вызывают обильное помутнение бульона, иногда появление пленки, пигментообразующие - изменение цвета среды. На МПА образуют экрашенные в цвет пигмента округлые блестящие полупрозрачные колонии (рисунок 30).

Рисунок 30 ‑ Бесспоровые гнилостные: Pseudomonas aeruginosa: a - колонии; б - клетки; Pseudomonas fluorescens: в - клетки

Флюоресцирующие палочки выделяют зеленовато-желтый пигмент, который растворяется в воде, и поэтому МПА окрашивается также в цвет пигмента.

Синегнойная палочка также выделяет водорастворимый пигмент сине-зеленого цвета, который состоит из двух пигментов: голубого - пиоцианина и желтого - флюоресцина.

Чудесная палочка образует колонии, окрашенные в ярко-красный или вишнево-красный цвет благодаря нерастворимому в воде пигменту продигиозину.

Палочка протея не образует колоний на плотной питательной среде, а растет в виде нежного вуалеобразного налета («ползучий рост»). Эшерихия образует серые средних размеров полупрозрачные колонии.

Бесспоровые палочки разжижают желатин, свертывают и пептонизируют молоко, образуют аммиак, иногда сероводород и индол. Сахаролитические свойства выражены у них слабо.

Палочка протея обладает большой протеолитической активностью. Ее обнаруживают в 100 % проб продуктов, пораженных гниением. В связи с этим дано родовое название Proteus, обозначающее «вездесущий», видовое название vulgaris обозначает «обычный», «простой».

Кишечная палочка рода эшерихия обладает незначительной протеолитической способностью. Так как она не гидролизует цельную белковую молекулу, то к гнилостному процессу подключается на стадии пептонов, расщепляя их с образованием аминов, аммиака, сероводорода. Вызывает свертывание молока, не разжижает желатин, обладает высокой ферментативной активностью в отношении лактозы, глюкозы и других Сахаров.

Для количественного учета протеолитических микроорганизмов (кроме Е. coli) используют молочный агар. Отдельно приготовляют 2%-ный водный агар и обезжиренное молоко. Обе среды стерилизуют отдельно при 121 °С 10 мин. При употреблении к расплавленному агару добавляют 20 % обезжиренного горячего молока и после тщательного перемешивания смесь, выливают в чашки Петри.

Для приготовления водного агара в 1 дм 3 питьевой воды вносят 20 г мелко измельченного агара и нагревают до кипения.. После растворения агара смесь в горячем состоянии фильтруют через ватный фильтр, разливают в колбы по 50-100 см 3 , закрывают ватными пробками и стерилизуют.

Для определения количества протеолитических бактерий проводят посев по 1 см 3 каждого из выбранных разведений продукта на чашки Петри и заливают молочным агаром. Посевы выдерживают в термостате при 30 °С в течение 48 ч и после этого подсчитывают число выросших колоний протеолитических бактерий (с широкими зонами просветления молока).

Способностью расщеплять белки обладают также плесени и актиномицеты. Многие протеолитические микроорганизмы образуют фермент липазу, вызывающий распад жиров. Наиболее выраженной липолитической способностью обладают плесени, флюоресцирующие палочки и другие бактерии рода Pseudomonas.

МАСЛЯНОКИСЛЫЕ БАКТЕРИИ

Они являются возбудителями маслянокислого брожения, в результате которого молочный сахар и соли молочной кислоты (лактаты) расщепляются с образованием масляной, уксусной, пропионовой, муравьиной кислот, этилового, бутилового, пропилового спиртов. Они способны расщеплять белки и усваивать азот из белков, аминокислот, аммиака, а некоторые представители - молекулярный азот из воздуха.

Маслянокислые бактерии относят к роду Clostridium, объединяющему 25 видов почвенных анаэробов (Cl.pasteurianum, Cl.butyricum, Cl.tyrobutyricum и др.), которые ранее объединяли под общим названием Cl. amylobacter.

Маслянокислые бактерии представляют собой грамположительные палочки цилиндрической формы размером 5-12 х 0,5-1,5 мкм, подвижные до момента спорообразования. Капсул не образуют, споры располагаются терминально и субтерминально. Клетки имеют вид булавы, теннисной ракетки или ложки (рисунок 31). Споры выдерживают кипячение в течение 2-3 мин, при пастеризации не погибают. Перед образованием спор в цитоплазме клеток накапливается гранулеза - крахмалоподобное вещество, окрашивающееся йодом в синий цвет.

Рисунок 31 ‑ Маслянокислые бактерии

Маслянокислые бактерии являются облигатными анаэробами. Особенностями развития этих микроорганизмов являются бурное газообразование и неприятный запах масляной кислоты. Оптимальная температура развития 30-35°С, температурные пределы роста 8-45 °С.

В учебной лаборатории культуру маслянокислых бактерий получают на картофельной среде. В небольшую длинногорлую колбу или высокую пробирку вносят несколько кусочков неочищенного картофеля, заливают водой на 3/4 объема, добавляют 1-2 г. мела и пастеризуют при 80 °С в течение 10 мин, после чего термостатируют при 37 °С. Через 1-2 сут развивается маслянокислое брожение.

В сыроделии количественный учет спор маслянокислых бактерий (мезофильных анаэробных лактатсбраживающих бактерий) проводят на плотной лактатно-ацетатной селективной среде (гл. 18).

Количественный учет маслянокислых бактерий производят также методом предельных разведений, высевая исследуемый материал в пробирки со стерильным цельным молоком или с обезжиренным молоком и парафином (1-2 г). После посева пробирки нагревают в водяной бане в течение 10 мин при температуре 90 °С, охлаждают до 30°С и выдерживают в термостате в течение 3 сут. при температуре 30°С.

Наличие маслянокислых бактерий определяют по образованию газа, запаху масляной кислоты, наличию в микроскопическом препарате крупных споровых палочек, дающих положительную реакцию на гранулезу. Гранулеза - крахмалоподобное вещество, являющееся цитоплазматическим включением и окрашивающееся йодом (раствором Люголя) в синий цвет.

Клостридии обладают хорошо выраженной протеолитической и сахаролитической активностью. Сбраживают молочный сахар, усваивают соли молочной кислоты (лактаты) с образованием масляной, уксусной, пропионовой, муравьиной кислот, небольшого количества этилового спирта и большого количества газов СО 2 и Н 2 . В результате обильного газообразования они могут вызывать порок позднее вспучивание сыров.

Кроме анаэробных клостридии маслянокислое брожение могут вызывать бактерии рода Pseudomonas, особенно флюоресцирующие палочки.

ЭНТЕРОКОККИ

Энтерококками называют молочнокислые стрептококки кишечного происхождения, т. е. они являются представителями нормальной микрофлоры кишечника человека и животного и выделяются в окружающую среду в довольно значительных количествах (в 1 г фекалий до 10 -10 9 жизнеспособных особей), но примерно в 10 раз меньше, чем бактерий группы кишечных палочек (БГКП). В настоящее время энтерококки считаются вторым после БГКП санитарно-показательным микроорганизмом при исследовании воды водоемов, особенно проб воды колодцев, плавательных бассейнов, сточных вод, почвы, предметов обихода.

К энтерококкам относят два основных вида кокков семейства Streptococcaceae, рода Enterococcus: Ent. faecalis (биовары Ent. liquefacieus и Ent. zymogenes) и Ent. fecium (биовар Ent. bovis).

В этот род внесены другие виды, ранее относившиеся к роду Streptococcus: E.durans, E.avium, E.gallinarum, E.casseliflavus, E.malodoratus, E.cecorum, E.dispar, E.hirae, E.mundtii, E.pseudoavium, E.raffinosus, E.saccharolyticus, E.seriolicida и E.solitarius. Таким образом, род Enterococcus объединяет 16 видов микроорганизмов.

Биовар E.liquefaciens часто является обитателем молочной железы, поэтому его называют маммококком (от лат. Glandula mamma - железа молочная).

Энтерококки представляют собой диплококки овальной или круглой формы размером 0,6-2 х 0,6-2,5 мкм, иногда располагающиеся цепочками, грамположительны, спор и капсул не образуют, неподвижные. Факультативные анаэробы, хорошо размножаются на простых питательных средах, но при выращивании необходимо пользоваться средами с ингибиторами, подавляющими сопутствующую флору (бактерии группы кишечных палочек, протей и др.). Лучший рост наблюдается при добавлении в среду глюкозы, дрожжевых препаратов и других стимуляторов роста. При культивировании в жидких питательных средах образуется осадок и наблюдается диффузное помутнение. На плотных средах колонии энтерококков мелкие, серовато-голубые, прозрачные, круглые с ровными краями, выпуклые, с блестящей поверхностью. На кровяном агаре в зависимости от биовара они могут давать гемолиз (Ent. liquefaciens), изменение цвета вокруг колоний на зеленовато-бурый, так как гемоглобин превращается в метгемоглобин (Ent. faecalis). Оптимальная температура роста 37 °С, пределы - 10-45 °С.

Для определения энтерококков используется молочная среда с полимиксином по Калине. На 100 см 3 1,5 % питательного агара (МПА) вносят глюкозы - 1 г, дрожжевого диализата (экстракта, автолизата) - 2 см 3 . Стерилизуют при -112 °С 20 мин; рН 6,0. Перед разливом в чашки Петри добавляют на 100 см 3 среды: кристаллического фиолетового - 1,25 см 3 0,01 % водного раствора; сухого вещества 2,3,5-трифенилтетразолий хлорида (ТТХ) -10 мг; стерильного обезжиренного молока - 10 см 3 ; полимиксина -200 ед/мл.

Типичные колонии энтерококков имеют на этой среде округлую форму, ровные края, блестящую поверхность, диаметр 1,5-2 мм, красноватую окраску с зоной протеолиза на светло-голубом фоне.

Энтерококки являются хемоорганотрофами, метаболизм у них бродильного типа, разлагают глюкозу и маннит до кислоты и газа, но не обладают каталазной активностью (в отличие от других грамположительных кокков). По антигенной структуре они однородны и относятся к группе D по классификации Ленсфильд.

Отличительные признаки энтерококков от мезофильных молочнокислых стрептококков по тестам Шермана приведены в таблице 18.

Таблица 18 ‑ Дифференциация энтерококков от стрептококков

Энтерококки довольно устойчивы к физическим и химическим факторам, что и было положено в основу дифференциации энтерококков от других стрептококков, входящих в нормальную микрофлору человека и вызывающих заболевание верхних дыхательных путей. Помимо устойчивости к температуре (легко переносят нагревание до 60 °С в течение 30 мин) энтерококки резистентны к действию активного хлора, некоторых антибиотиков, красителей и др.

Дифференциацию Ent. faecalis от Ent. faecium проводят по способности ферментировать глицерин: Ent. faecalis расщепляет глицерин в аэробных и анаэробных условиях, в то время как Ent. faecium только в аэробных. Для дифференциации видов энтерококков рекомендовано свыше 30 биохимических тестов: ферментация сорбита, маннита, арабинозы, редукция ТТХ, пептонизация молока и др. Необходимость разделения энтерококков на виды связана с их неодинаковой распространённостью у людей и животных. Однако в повседневной практике всех представителей энтерококков считают санитарно-показательными микроорганизмами.

Будучи термостойкими, они составляют значительную часть остаточной микрофлоры пастеризованного молока и играют определенную роль- при созревании сыра. Ent. durans за рубежом применяют в составе закваски при производстве некоторых сыров. В нашей стране проводят исследования о возможности использования Ent. faecium в составе закваски для кисломолочных продуктов. В остальных случаях энтерококки являются нежелательными микроорганизмами в молоке и молочных продуктах. Особенно технически вредными являются маммококки (Ent. liquefaciens), которые выделяют сычужный фермент, вызывают прогоркание молочных продуктов и преждевременное свертывание молока.

При развитии в воде бактерий наблюдаются гнилостные, землистые, затхлые, ароматические (приятные и неприятные) кислые, сходные с запахом бензина, спирта, аммиака и другие запахи.[ ...]

Среда Бейеринка для гнилостных бактерий, образующих сероводород.[ ...]

Содержащиеся в подземных водах бактерии выполняют большую геохимическую работу, видоизменяя химический и газовый состав вод. Следует подчеркнуть, что многие развивающиеся в подземных водах бактерии являются безвредными для здоровья человека и даже участвуют в бактериальной очистке вод от загрязнения.[ ...]

Слизистый бактериоз. Возбудители - гнилостные бактерии рода Erwinia, в основном Е. carotovora (Jones) Holland и различные ее формы - Е. carotovora var. carotovora (Jones) Dye, E. carotovora var. atroseptica (van Hall) Dye, E. carotovora var. carotovora (Jones) Dye, биотип aroideae (Towns) Holland.[ ...]

Чрезвычайно важно знать и учитывать, что бактерии сохраняют свою жизнеспособность при анаэробных (гнилостных) процессах очень долгое время. При аэробном же процессе, при окислении органических веществ значительная часть болезнетворных бактерий погибает вследствие уменьшения необходимой для них питательной среды.[ ...]

Кислая среда (pH [ ...]

В практике было отмечено, что общее число бактерий значительно снижается в процессе отстаивания воды. Чем более загрязнена вода, тем. быстрее погибают в ней патогенные микробы. Это парадоксальное явление объясняется антагонизмом микробов. Снижение количества микробов наблюдается при отстаивании в течение первых двух дней: а затем в отстойниках вырастают водоросли, которые при отмирании разлагаются гнилостными микроорганизмами. В результате ухудшаются органолептические показатели воды, исчезает растворенный кислород, падает окислительный потенциал.[ ...]

Соляная кислота может подавлять развитие гнилостных и масляно-кислых бактерий в корме. Поскольку наиболее доступным источником азота для микроорганизмов является аммиак, то в консервируемых кормах происходит быстрое накопление соляной кислоты. При значении pH среды ниже 3,9-4,0 практически полностью прекращаются процессы биоразложения, и можно быстро достичь эффекта консервации кормов. Роль соляной кислоты не ограничивается только подавлением биологических процессов, происходящих в кормах. Она катализирует процессы гидролиза органических продуктов, в том числе и целлюлозы. Это позволило значительно повысить качество силоса и продуктивность крупного рогатого скота.[ ...]

Бактериоз чеснока (рис. 76). Вызывается несколькими видами бактерий, наибольшее значение из которых имеют Erwinia caroto-vora (Jones) Holland и Pseudomonas xanthochlora (Schuster) Slapp. На зубках чеснока в период хранения появляются углубленные коричневые язвочки или полости, идущие от допца вверх. Ткани пораженного зубка приобретают перламутрово-желтую окраску, становятся как бы подмороженными. Чеснок имеет типичный гнилостный запах.[ ...]

Протеазы - расщепляющие белковую молекулу, эти ферменты выделяются многими гнилостными бактериями.[ ...]

Взаимоотношения симбиотического характера проявляются также между некоторыми формами молочнокислых бактерий, дрожжей и гнилостных бактерий (при производстве кефира).[ ...]

Химические элементы и соединения, содержащиеся в атмосфере, поглощают часть соединений серы, азота, углерода. Гнилостные бактерии, содержащиеся в почве, разлагают органические остатки, возвращая СОг в атмосферу. На рис. 5.2 приведена схема загрязнения среды канцерогенными полициклическими ароматическими углеводородами, содержащимися в выбросах транспортных средств, объектов транспортной инфраструктуры, и ее очищения от данных веществ в компонентах окружающей среды.[ ...]

При брожении происходит частичное выпадение хлопьев белковых веществ. Однако кислая реакция и наличие молочнокислых бактерий препятствуют развитию гнилостных бактерий, способствующих дальнейшему процессу распада веществ. Только после нейтрализации образовавшихся кислот сточные воды могут быть подвергнуты процессу гниения. Для сохранения тепла сточных вод необходимо предусмотреть отепленное помещение.[ ...]

Назначение дезинфекции. Введение дезинфицирующего вещества в воду полностью обеспечивает отсутствие в питьевой воде гнилостных и патогенных бактерий в соответствии с официальными стандартами и исследованиями на Escherichia coli, фекальные стрептококки и сульфитвосстанавливающие Clostridium.[ ...]

В практике большое значение имеет "биохимический распад белков. Процесс распада белков или их производных под влиянием гнилостных бактерий называется гниением. Процессы гниения могут происходить аэробно и анаэробно. Гниение сопровождается выделением резко пахнущих веществ: аммиака, сероводорода, скатола, индола, меркаптанов и др.[ ...]

После выкашивания водоем нужно заново заполнить водой и некоторое время контролировать с целью выявления момента прекращения гнилостных процессов (определения кислорода, углекислоты, окисляемости, аммиака, нитратов, учет численности бактерий-сапрофитов). Опыт можно начинать только после возвращения гидрохимических и микробиологических показателей к норме.[ ...]

Кожевенное производство требует мягкой воды, так как соли, обусловливающие жесткость, ухудшают использование дубильных веществ. Гнилостные бактерии и грибы уменьшают прочность кожи, поэтому присутствие их в воде, идущей для кожевенного производства, недопустимо.[ ...]

Детритофаги, или сапрофаги, - организмы, питающиеся мертвым органическим веществом - остатками растений и животных. Это различные гнилостные бактерии, грибы, черви, личинки насекомых, жуки-копрофаги и другие животные - все они выполняют функцию очищения экосистем. Детритофаги участвуют в образовании почвы, торфа, донных отложений водоемов.[ ...]

Цианэтилированный хлопок обладает высокой гнило- и плесе-нестойкостью. При выдерживании в течение очень длительного времени в почве, зараженной бактериями, вызывающими гниение целлюлозы, этот продукт полностью сохраняет прочность (а в некоторых случаях наблюдалось даже некоторое ее повышение). Циан-этилпрованные хлопок и манильская пенька также не подвергаются гниению, длительно находясь в воде . Гнилостойкость возрастает с увеличением содержания азота и становится абсолютной, когда оно достигает 2,8-3,5%. Однако присутствие даже незначительных количеств карбоксильных групп (образующихся в результате омыления цианэтильных групп) отрицательно сказывается на устойчивости целлюлозных материалов к действию гнилостных бактерий. Поэтому очень важно проводить цианэтилирование в наиболее мягких условиях. Следует также уменьшать интенсивность щелочных обработок или совсем избегать их при промывке, отбелке и крашении цианэтилированного хлопка .[ ...]

Типичное молочнокислое брожение широко применяется для изготовления молочнокислых продуктов на молочных заводах. Большое значение молочнокислые бактерии имеют в консервировании свежих кормов путем силосования- Консервирование сочной кормовой массы основано на сбраживании сахаров, содержащихся в растительном соке с образованием молочной кислоты. Благодаря кислой реакции среды предотвращается развитие гнилостных процессов в силосуемой массе. В последние годы разработаны силосные закваски из молочнокислых бактерий. Применение этих заквасок позволяет ускорить и улучшить процесс созревания силоса, избежать образования масляной кислоты.[ ...]

Для кожевенного производства необходима мягкая вода! так как соли жесткости ухудшают использование дубильных веществ. В воде должны отсутствовать гнилостные бактерии и грибки, уменьшающие прочность кожи.[ ...]

Всем известна субстратная специфичность микроорганизмов по отношению к природным источникам питания. Так, например, разложение белковых веществ осуществляется гнилостными бактериями, которые, однако, не способны конкурировать с дрожжами в ассимиляции углеводов. Многие микробы характеризуются особенной приверженностью к определенному субстрату, и некоторые из них даже получили соответствующие названия, как то - целлюлозоразлагающие бактерии. Это свойство микроорганизмов издавна используется на практике. Даже одно и то же органическое вещество атакуется различными группами микроорганизмов по-разному. Это особенно четко было показано в связи с микробной трансформацией стероидов. Г. К. Скрябин с сотрудниками приводит множество примеров высокой химической специализации микроорганизмов и даже использует это свойство как таксономический признак . Нами на примере сердечных гликозидов отмечено, что грибы рода Aspergillus вводят гидроксильную группу преимущественно в 7р-положение стероидного ядра, в то время как фузарии предпочитают окислять 12ß-ynnepoflHbifl атом . При микробной деструкции синтетических органических веществ наблюдается аналогичное явление . Установлено, что обработка такой разнородной популяции, как почва или активный ил, например, нитро- и динитрофенолами приводит к заметному обогащению ее видами Achromobacter, Alcaligenes и Flavobacterium, тогда как прибавление тиогликолана увеличивает относительное содержание Aeromonas и Vibrio . Совершенно очевидно, что для успешного разрушения тех или иных синтетических органических веществ необходимо подбирать соответствующие микроорганизмы.[ ...]

Сточная вода без доступа воздуха начинает бродить в тех случаях, когда она содержит преимущественно легко разлагаемые углеводы, свободные от азота. Брожение вызывается бактериями. При этом наряду с углекислотой образуются органические кислоты, которые снижают pH до 3-2. Это мешает работе гнилостных бактерий даже в присутствии азотсодержащих соединений (белков).[ ...]

При наличии в основании свалки водонепроницаемого грунта свалка загрязняет грунтовые воды и окружающую местность выделяющейся из нее жидкостью, которая содержит продукты гнилостного распада органических веществ мусора. Средние значения загрязнения стока из свалки по общему числу бактерий подобны средним значениям для сточных вод городской канализации, а по коли-индексу даже превышают их в 2-3 раза.[ ...]

Двухъярусные отстойники применяют обычно для небольших и средних очистных станций производительностью до 10 тыс. м3/сутки. Осадок, выпавший в иловую камеру, сбраживается под влиянием гнилостных анаэробных бактерий, которые расщепляют сложные органические вещества (жиры, белки, углеводы) первоначально до кислот жирного ряда, а,в дальнейшем разрушают их до конечных, более простых продуктов: газов метана, углекислоты и частично сероводорода. Сероводород при щелочном б,рожении связывается в растворе с железом, образуя сернистое железо, окрашивающее осадок в черный цвет.[ ...]

При определении санитарно-показательных клостри-дий особое внимание следует обратить на температуру инкубации. В летний период при 37°С на среде Вильсона- Блера вырастает до 90-99% черных колоний, образованных гнилостными анаэробными палочками и кокками, не являющимися показателями фекального загрязнения водоемов (Т. 3. Артемова, 1973). Совместный учет этих сапрофитных бактерий с кло.стридиями значительно искажает результаты, показатель теряет индикаторное значение при оценке качества воды водоемов и питьевой воды. Вполне возможно, что отрицательное отношение к клостридиям как санитарно-показательным организмам подкреплялось данными неточных методов исследования.[ ...]

Стабилизация производится с целью предотвращения загнивания осадков для облегчения их захоронения или утилизации. Сущность стабилизации осадков заключается в изменении их физико-химических характеристик, при которых происходит подавление жизнедеятельности гнилостных бактерий.[ ...]

На содержание кислорода в воде влияет загрязненность ее органическими веществами, на окисление которых расходуется значительное количество кислорода, вследствие чего снижается его концентрация. Слизь, выделяемая некоторыми рыбами в воду, служит хорошим субстратом для гнилостных бактерий, большинство которых потребляет кислород, снижая тем самым его содержание в воде, что особенно опасно при высокой плотности посадки и тем более летом, при массовом развитии гнилостных бактерий. Поэтому при летних перевозках рекомендуется менять воду в транспортной таре не реже раза в сутки и поддерживать более низкую температуру воды, что замедлит развитие гнилостных бактерий. При осенне-зимних перевозках живой рыбы ежесуточная смена воды необязательна.[ ...]

Распад основных органических компонентов осадка - белка, жиров, углеводов - происходит с различной интенсивностью, в зависимости от преобладающей формы тех или иных микроорганизмов. Так, например, для септиков характерна обстановка, создающая условия для развития анаэробных гнилостных бактерий первой стадии (фазы) разложения органических веществ.[ ...]

Жизнедеятельность микроорганизмов создает помехи в работе очистных сооружений, которые состоят в появлении привкусов и запахов у воды. Химический состав соединений, обусловливающий появление запаха, зависит от вида микроорганизма, условий его жизнедеятельности. Так, актиномицеты в условиях затрудненной аэрации придают воде землистый запах. Запах воды может вызываться также массовым развитием бактерий. В зависимости от образующихся метаболитов запахи могут быть также различными: ароматический, сероводородный, плесневый, гнилостный. В период массового развития микроорганизмов-продуцентов запахов и привкусов мясо рыб также приобретает привкус. Основная роль в возникновении запахов воды принадлежит аминам, органическим кислотам, фенолам, эфирам, альдегидам, кетонам. Для удаления запахов и привкусов, вызываемых микроорганизмами, необходимо применение дополнительных методов очистки воды.[ ...]

Фосфор - важнейший биогенный элемент, чаще всего лимитирующий развитие продуктивности водоемов. Поэтому поступление избытка соединений фосфора с водосбора приводит к резкому неконтролируемому приросту растительной биомассы водного объекта (это особенно характерно для непроточных и малопроточных водоемов). Происходит эвтрофикация водного объекта, сопровождающаяся перестройкой всего водного сообщества и ведущая к преобладанию гнилостных процессов (и, соответственно, возрастанию мутности, концентрации бактерий, снижению концентрации растворенного кислорода и пр.).[ ...]

В зависимости от расхода сточных вод, технологической схемы их очистки и обработки осадка, гидравлической крупности взвешенных веществ применяют различные типы песколовок: горизонтальные (с прямолинейным и круговыми движениями воды, с различными способами удаления песко-пульпы), тангенциальные, аэрируемые, реже вертикальные. В песколовках осаждается 0,02-0,03 л/сут. минеральных веществ в расчете на 1 жителя зольностью 60-95% и влажностью 30-50%. При зольности менее 80% на песке имеются жировые и масляные остатки, которые могут стать средой для гнилостных бактерий, для развития личинок мух, что приводит к загрязнению окружающей среды. Во избежание этого рекомендуется рецикл Песковой пульпы или ее аэрация (по аналогии с аэрируемой песколовкой). В песколовках выделяется до 95% минеральных частиц из сточных вод.[ ...]

Синезеленые водоросли наиболее интенсивно развиваются в застойных водоемах с теплой водой. Особенно больших масштабов их развитие достигло в водохранилищах, относящихся к озерному типу с водообменом 2 ... 4 раза в год. При этом продукты их распада становятся источником загрязнения воды. В результате экранирующего действия пятен цветения (затенения) подавляются процессы фотосинтеза в толще воды, что- сопровождается гибелью кормовых организмов и замором рыб. При этом гибнет в основном молодь окуневых рыб (судак, окунь, ерш).[ ...]

В начале нашего века возникла микробиологическая теория старения, творцом которой был И. И. Мечников, который различал физиологическую старость и патологическую. Он считал, что старость человека является патологической, т. е. преждевременной. Основу представлений И. И. Мечникова составляло учение об ортобиозе (Orthos - правильный, bios - жизнь), в соответствии с которым основной причиной старения является повреждение нервных клеток продуктами интоксикации, образующимися в результате гниения в толстом кишечнике. Развивая учение о нормальном образе жизни (соблюдение правил гигиены, регулярный труд, воздержание от вредных привычек), И. И. Мечников предлагал также способ подавления гнилостных бактерий кишечника путем употребления кисломолочных продуктов.[ ...]

Проведена сравнительная оценка унифицированного метода, в котором используют железо-сульфитную среду Вильсона - Блера без антибиотиков и температуру инкубации 37°С, и нашей модификации с использованием элективной модифицированной среды СПИ и температуры инкубации 44-45°С. После подсчета черных колоний, вырастающих в том и другом случае, каждую из них идентифицировали по реакции на лакмусовом молоке, по спорообразованию и морфологии клеток. Сравнительная оценка методов выполнена при исследовании воды водоема в процессе самоочищения и на этапах очистки питьевой воды по сезонам года. В зимний период существенной разницы между индексами клостридий, определенных изучаемыми методами, не получено. В летний период черные колонии, вырастающие при 37°С, на 90- 99% состоят из гнилостных анаэробных палочек и кокков, редуцирующих сульфит, не являющихся прямыми показателями фекального загрязнения. Совместный учет этих сапрофитных бактерий с клостридиями значительно искажает результаты, вследствие чего эта группа теряет санитарно-показательное значение.[ ...]

Производительность септиков зависит не столько от их формы (круглой или прямоугольной), сколько от некоторых деталей их конструкции. Отверстия для впуска и выпуска воды должны располагаться как можно дальше друг от друга во избежание гидравлического короткого замыкания. Этой цели в известной степени служит разделение больших септиков на отдельные камеры. При надлежащей организации протока можно исключить образование застойных зон, слабо участвующих в процессе обмена воды. Септик рассчитьвается по глубине таким образом, чтобы между донным осадком и слоем плавающего ила находился слой воды толщиной около 1 м. В этом пространстве происходят необходимые перемещения сбраживаемого содержимого септика, благодаря чему вновь поступившая сточная вода может хорошо заражаться гнилостными бактериями. Отсюда минимальная полезная высота принимается равной 1,2 м. Если заполнение септика намечается на высоту более 2 м, следует предусматривать отклонение потока по вертикали. Осевший и плавающий ил не должны вытекать вместе с водой через отверстия, устроенные в стенках камер, и через сток из септика. Эти требования по притоку и отводу, а также относительно связи между камерами могут быть обеспечены разнообразными способами, поэтому здесь трудно рекомендовать какую-либо определенную конструкцию.[ ...]

Оштукатуривание стенок даже с применением штукатурного раствора с большим содержанием цемента не может быть рекомендовано, так как оно не обеспечивает водонепроницаемости. При проникании агрессивных сточных вод в штукатурку последняя довольно быстро разрушается, а затем агрессивному воздействию подвергаются незащищенные участки стен. Поэтому целесообразнее покрывать стены септика битумными эмульсиями. Эти эмульсии следует наносить на совершенно сухую поверхность бетона или раствора. Для эффективного уплотнения поверхности необходимо предусматривать многослойное покрытие; первый слой выполняется из наносимого в холодном состоянии жидкого битумного раствора, поверх которого затем наносится слой горячего битума. Устройство дегтевых покрытий является нецелесообразным, так как некоторые составные части дегтя, попадая в раствор, могут вызвать гибель гнилостных бактерий.

Дисбактериоз кишечника? это состояние, при котором соотношение бактерий, населяющих человеческий кишечник, нарушается. В такой обстановки пригодных микробов становится поменьше, а пагубных? огромнее. Это может привести к возникновению болезней и нарушению работы ЖКТ.

Причины нарушений

Развитие патогенных микроорганизмов могут вызвать такие действия:

К сожалению, первая и вторая степень дисбактериоза фактически не диагностируется. Следственно признаки становления бактерий в кишечнике дозволено определить только на третьей и четвертой стадии заболевания.

  • Нарушение стула:
    • Страдающие дисбактериозом жалятся на непрерывную диарею. Это происходит из-за усиления перистальтики кишечника и непомерного выделения кислот. Изредка стул может быть с примесями крови либо же слизи. Экскременты имеют запах гнили;
    • Возрастное нарушение работы ЖКТ может привести к становлению запоров. Неимение типичной флоры гораздо снижает перистальтику.
  • Вздутие живота:
    • Спазматическая боль. Непомерное образование газов содействует увеличению давления в кишечнике. Если пациент страдает от расстройства тонкого кишечника, он нередко жалится на спазматические боли в районе пупка. Если же нарушение микрофлоры отслеживается в толстом кишечнике, боль в животе с правой стороны;
    • Расстройства. Тошнота, неимение аппетита и рвота свидетельствуют о нарушении пищеварительных процессов;
    • Сухость, а также бледность кожных покровов, ухудшение состояния ногтей и волос, стоматит;
    • Аллергия. Зачастую у пациентов возникают кожные высыпания и зуд. Как водится, их вызывают продукты, которые ранее типично усваивались организмом;
    • Интоксикация. Стремительная утомляемость, головная боль, а также температура говорят о накоплении в организме продуктов распада.

    Могут ли быть осложнения?

    Развитие гнилостных бактерий в человеческом кишечнике может спровоцировать и осложнения:

    • Сепсис. Если патогенные микробы всосутся в кровь человека, это может вызвать ее заражение;
    • Энтероколит. Если пациент своевременно не обратился к врачу, у него может развиться хроническое воспаление толстого и тонкого кишечников;
    • Анемия. Неимение типичной флоры не разрешает довольному числу микроэлементов и витаминов всасываться в кровь, что отражается на ярусе гемоглобина в ней;
    • Перитонит. Огромное число «дрянных» болезнетворных бактерий кишечника деструктивно влияет ткани ЖКТ, это может привести к выбросу содержимого в брюшную полость;
    • Снижение веса. От того что аппетит у человека снижается, это приводит к существенной потере веса.

    Как лечить?

    Лечение кишечника от пагубных бактерий проводится с поддержкой особых препаратов, которые угнетают становление патогенной флоры. Виды медикаментов, их дозировку и длительность курса лечения могут определяться только докторами. Следственно перед приемом лекарство неукоснительно проконсультируйтесь с доктором.

    Препараты, применяемые при дисбактериозе:

    • Пробиотики. Лекарства содержат живые пригодные бактерии, которые восстанавливают микрофлору. Их применяют для лечения недуга на 2-4 стадии;
    • Пребиотики. Данные препараты имеют бифидогенное качество. Они способны стимулировать размножение «отменных» микроорганизмов, которые позднее вытесняют «пагубные» микробы;
    • Симбиотики. Это составные виды препаратов, которые включают в себя и пребиотики, и прибиотики. Такие лекарства стимулируют рост и становление недостающих пригодных бактерий;
    • Сорбенты. Назначают во время интоксикации организма для итога продуктов метаболизма;
    • Антибактериальные медикаменты. Почаще каждого их назначают теснее на 4-й степени заболевания, когда нужно бороться с становлением пагубных кишечных бактерий;
    • Противогрибковые лекарства. Если в экскрементах обнаруживаются грибковые образования по типу Кандиды, доктор назначит противогрибковый препарат, тот, что ликвидирует всякие дрожжеподобные образования;
    • Ферменты. При нарушениях ЖКТ ферменты «помогают» пригодным бактериям в переработке пищи.

    Соблюдение диеты

    Для коррекции микрофлоры дюже главно соблюдать диету, которая назначается лечащим врачом. Первым делом из рациона необходимо исключить всякие виды спиртных напитков, толстую и слишком острую пищу, сладости (пирожные, торты, леденцы, конфеты), копченые продукты и соления.

    Все эти продукты только увеличивают бродильные процессы, а это сказывается и на флоре кишечника.

    Питаться нужно зачастую, но при этом доли не обязаны быть большими. Желанно в течение дня иметь от 4 до 5 приемов пищи. Дабы усовершенствовать работу ЖКТ, усердствуйте не употреблять во время еды воду, кофе и газированные напитки. Любая жидкость сокращает концентрацию желудочного сока, а это принуждает еду перевариваться дольше.

    Продукты, которые увеличивают метеоризм, неукоснительно исключите:

    • фасоль;
    • горох;
    • газированная вода;
    • хлебобулочные изделия с отрубями;

    А вот белки в рационе следовало бы увеличить. Отдавайте предпочтение только нежирному мясу, которое класснее есть либо в тушеном, либо в вареном виде.

    Чтобы «активировать» работу своего кишечника, усердствуйте почаще применять зелень: петрушку, зеленый лук, укроп и сельдерей. «Зеленые помощники» усилят действие типичной микрофлоры, что поможет в борьбе с становлением патогенной.
    Если вы подметили признаки происхождения дисбактериоза, усердствуйте употреблять такие продукты:

    • свежие овощи;
    • фрукты;
    • кефир;
    • гречка;
    • йогурты;
    • яблочное пюре;
    • овес;
    • простокваша;
    • ряженка.

    Процесс лечения от такого недуга, как дисбактериоз, дюже долгий и сложный. Он требует соблюдения всех врачебных предписаний и диеты.

    На 1-й взор кажется, что степень тяжести заболевания слишком преувеличена, но не стоит забывать о допустимых последствиях.

    Лечение может быть назначено только компетентным экспертом. При наличии вышеперечисленных признаков, не бегите сразу же в аптеку.

    Обратитесь к врачу, тот, что подберет для вас наилучший курс лечения и медикаменты. Берегите себя и свое здоровье.

    Вам также будет интересно:

    Вертута из дрожжевого теста с брынзой
    Ветрута - традиционный молдавский пирог из вытяжного теста. Именно благодаря ему выпечка...
    Cонник косить, к чему снится косить во сне видеть
    Домашний сонник Коса, косить к чему снится Если сновидцу снится коса или ему приходится...
    Сонник: к чему снится коса
    приснилась коса (косить)Увиденная во сне коса, сигнализирует о возможном нарушении ваших...
    Хлеб ржаной половина покупать во сне
    Хлеб во сне является символом пищи для тела и ума. Видеть свежеиспеченный каравай – к...
    Суп-харчо - классический рецепт с тклапи, рисом и тертыми орехами
    Ароматный, сытный и наваристый суп харчо хорош для зимних обедов, когда за окном мороз и...