Сайт о холестерине. Болезни. Атеросклероз. Ожирение. Препараты. Питание

Как распознать ведьму — признаки, предупреждающие зло Сумеречная ведьма какая она магия

Из чего производят инсулин

Эстрада ссср Советские эстрадные певцы 60х 70х годов

Государственный комитет по чрезвычайному положению Мнение бывших участников гкчп

Жареная треска на сковороде

Салат из кольраби: рецепт с яйцом и с майонезом (фото)

Готовим заливное из говядины: рецепт с фото

Сыр осетинский - описание пищевой ценности этого продукта с фото, его калорийность Сыр осетинский рецепт приготовления в домашних условиях

Пикантный салат украсьте

Рецепт с курагой Овсяные хлопья с изюмом рецепт

Как приготовить шницель из курицы на сковороде

Вертута из дрожжевого теста с брынзой

Cонник косить, к чему снится косить во сне видеть

Прокуратура Башкортостана: «Преподавание башкирского языка вопреки согласию родителей не допускается Из истории вопроса

Что мы знаем о Дагестанской кухне?

Центральные и периферические хеморецепторы, их роль в регуляции дыхания. Лекция на тему — «Регуляция дыхания Влияние углекислого газа на состояние дыхательного центра

Установите правильную последовательность процессов нормальных вдоха и выдоха у человека, начиная с повышения концентрации СО 2 в крови.

Запишите в таблицу соответствующую последовательность цифр.

1) сокращение диафрагмы

2) повышение концентрации кислорода

3) повышение концентрации СО 2

4) возбуждение хеморецепторов продолговатого мозга

6) расслабление диафрагмы

Пояснение.

Последовательность процессов нормальных вдоха и выдоха у человека, начиная с повышения концентрации СО 2 в крови:

3) повышение концентрации СО 2 →4) возбуждение хеморецепторов продолговатого мозга→6) расслабление диафрагмы→1) сокращение диафрагмы→2) повышение концентрации кислорода→5) выдох

Ответ: 346125

Примечание.

Дыхательный центр находится в продолговатом мозге. Под действием углекислого газа крови в нем возникает возбуждение, оно передается к дыхательным мышцам, происходит вдох. При этом возбуждаются рецепторы растяжения в стенках легких, они посылают тормозящий сигнал в дыхательный центр, он перестает посылать сигналы к дыхательным мышцам, происходит выдох.

Если задержать дыхание надолго, то углекислый газ будет все сильнее возбуждать дыхательный центр, в конце концов дыхание возобновится непроизвольно.

Кислород не влияет на дыхательный центр. При избытке кислорода (при гипервентиляции) происходит спазм сосудов мозга, что приводит к головокружению или обмороку.

Т.к. данное задание вызывает много споров, о том, что последовательность в ответе не корректная - принят решение отправить данное задание в неиспользуемые.

Кто хочет подробнее узнать о механизмах регуляции дыхания можно почитать статью "Физиология системы дыхания". О хеморецепторах в самом конце статьи.

Дыхательный центр

Под дыхательным центром следует понимать совокупность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм.

В нормальных (физиологических) условиях дыхательный центр получает афферентные сигналы от периферических и центральных хеморецепторов, сигнализирующих соответственно о парциальном давлении О 2 в крови и концентрации Н + во внеклеточной жидкости мозга. В период бодрствования деятельность дыхательного центра регулируется дополнительными сигналами, исходящими из различных структур ЦНС. У человека это, например, структуры, обеспечивающие речь. Речь (пение) может в значительной степени отклонить от нормального уровень газов крови, даже снизить реакцию дыхательного центра на гипоксию или гиперкапнию. Афферентные сигналы от хеморецепторов тесно взаимодействуют с другими афферентными стимулами дыхательного центра, но, в конечном счете, химический, или гуморальный, контроль дыхания всегда доминирует над нейрогенным. Например, человек произвольно не может беско­нечно долго задерживать дыхание из-за нарастающих во время остановки дыхания гипоксии и гиперкапнии.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма регулируются дыхательным центром, расположенным в продолговатом мозге.

В дыхательном центре имеются две группы нейронов: инспираторные и экспираторные. При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.

В верхней части моста головного мозга (варолиев мост) находится пневмотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III-IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III-XII) грудных сегментов спинного мозга.

Дыхательный центр выполняет две основные функции в системе дыхания: моторную, или двигательную, которая проявляется в виде сокращения дыхательных мышц, и гомеостатическую, связанную с изменением характера дыхания при сдвигах содержания О 2 и СО 2 во внутренней среде организма.

Диафрагмальные мотонейроны. Образуют диафрагмальный нерв. Нейроны расположены узким столбом в медиальной части вентральных рогов от СIII до CV. Диафрагмальный нерв состоит из 700-800 миелинизированных и более 1500 немиелинизированных волокон. Подавляющее количество волокон является аксонами α-мотонейронов, а меньшая часть представлена афферентными волокнами мышечных и сухожильных веретен, локализованных в диафрагме, а также рецепторов плевры, брюшины и свободных нервных окончаний самой диафрагмы.

Мотонейроны сегментов спинного мозга, иннервирующие дыхательные мышцы. На уровне CI-СII вблизи латерального края промежуточной зоны серого вещества находятся инспираторные нейроны, которые участвуют в регуляции активности межреберных и диафрагмальных мотонейронов.

Мотонейроны, иннервирующие межреберные мышцы, локализованы в сером веществе передних рогов на уровне от TIV до ТX. Причем одни нейроны регулируют преимущественно дыхательную, а другие - преимущественно позно-тоническую активность межреберных мышц. Мотонейроны, иннервирующие мышцы брюшной стенки, локализованы в пределах вентральных рогов спинного мозга на уровне TIV-LIII.

Генерация дыхательного ритма.

Спонтанная активность нейронов дыхательного центра начинает появляться к концу периода внутриутробного развития. Об этом судят по периодически возникающим ритмическим сокращениям мышц вдоха у плода. В настоящее время доказано, что возбуждение дыхательного центра у плода появляется благодаря пейсмекерным свойствам сети дыхательных нейронов продолговатого мозга. Иными словами, первоначально дыхательные нейроны способны самовозбуждаться. Этот же механизм поддерживает вентиляцию легких у новорожденных в первые дни после рождения. С момента рождения по мере формирования синаптических связей дыхательного центра с различными отделами ЦНС пейсмекерный механизм дыхательной активности быстро теряет свое физиологическое значение. У взрослых ритм активности в нейронах дыхательного центра возникает и изменяется только под влиянием различных синаптических воздействий на дыхательные нейроны.

Дыхательный цикл подразделяют на фазу вдоха и фазу выдоха относительно движения воздуха из атмосферы в сторону альвеол (вдох) и обратно (выдох).

Двум фазам внешнего дыхания соответствуют три фазы активности нейронов дыхательного центра продолговатого мозга: инспираторная , которая соответствует вдоху; постинспираторная , которая соответствует первой половине выдоха и называется пассивной контролируемой экспирацией; экспираторная , которая соответствует второй половине фазы выдоха и называется фазой активной экспирации.

Активность дыхательных мышц в течение трех фаз нейронной активности дыхательного центра изменяется следующим образом. В инспирацию мышечные волокна диафрагмы и наружных межреберных мышц постепенно увеличивают силу со­кращения. В этот же период активируются мышцы гортани, которые расширяют голосовую щель, что снижает сопротивление воздушному потоку на вдохе. Работа инспираторных мышц во время вдоха создает достаточный запас энергии, которая высвобождается в постинспираторную фазу, или в фазу пассивной контролируемой экспирации. В постинспираторную фазу дыхания объем выдыхаемого из легких воздуха контролируется медленным расслаблением диаф­рагмы и одновременным сокращением мышц гортани. Сужение голосовой щели в постинспираторную фазу увеличивает сопротивление воздушному потоку на выдохе. Это является очень важным физиологическим механизмом, который препятствует спадению воздухоносных путей легких при резком увеличении скорости воздушного потока на выдохе, например при форсированном дыхании или защитных рефлексах кашля и чиханья.

Во вторую фазу выдоха, или фазу активной экспирации, экспираторный поток воздуха усиливается за счет сокращения внутренних межреберных мышц и мышц брюшной стенки. В эту фазу отсутствует электрическая активность диафрагмы и наружных межреберных мышц.

Регуляция деятельности дыхательного центра.

Регуляция деятельности дыхательного центра осуществляется с помощью гуморальных, рефлекторных механизмов и нервных импульсов, поступающих из вышележащих отделов головного мозга.

Гуморальные механизмы. Специфическим регулятором активности нейронов дыхательного центра является углекислый газ, который действует на дыхательные нейроны непосредственно и опосредованно. В ретикулярной формации продолговатого мозга, вблизи дыхательного центра, а также в области сонных синусов и дуги аорты обнаружены хеморецепторы, чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейронам, что приводит к повышению их активности.

Ответ: 346125

Хеморецепторами называются рецепторы, реагирующие на изменение химического состава омывающей их крови или иной жидкости. Важнейшие из них, участвующие в постоянном контроле вентиляции, расположены у вентральной поверхности продолговатого мозга около выходов IX и X черепно-мозговых нервов. Местная обработка Н + или растворенным СO 2 этой области через несколько секунд вызывает у животных усиление дыхания.

Когда-то считалось, что СO 2 действует непосредственно на медуллярные дыхательные центры, однако сейчас принято рассматривать хеморецепторы как отдельные образования. По некоторым данным, они залегают на глубине 200 — 400 мкм от вентральной поверхности продолговатого мозга.

Они омываются внеклеточной жидкостью (ВЖ) головного мозга, через которую СО 2 легко диффундирует от кровеносных сосудов к СМЖ. Ионы Н + и HCO 2 не могут так легко пересекать гематоэнцефалический барьер.

Центральные хеморецепторы омываются внеклеточной жидкостью головного мозга и реагируют на изменения в ней концентрации ионов Н + : увеличение концентрации приводит к усилению дыхания и наоборот. Состав жидкости, омывающей эти рецепторы, зависит от состава спинномозговой жидкости (СМЖ), местного кровотока и местного метаболизма.

Из всех этих факторов наибольшую роль, по-видимому, играет состав СМЖ. Эта жидкость отделена от крови гематоэнцефалическим барьером, относительно непроницаемым для ионов Н + и HCO 2 но свободно пропускающим молекулярный СO 2 . При повышении Р CO2 в крови СO 2 диффундирует в СМЖ из кровеносных сосудов головного мозга, в результате чего в СМЖ накапливаются ионы Н + , стимулирующие хеморецепторы.

Таким образом, уровень СO 2 в крови влияет на вентиляцию главным образом путем изменения рН СМЖ. Раздражение хеморецепторов приводит к гипервентиляции, понижающей Р СO2 в крови и, следовательно, в СМЖ. При повышении Р CO2 в артериальной крови расширяются сосуды головного мозга, что способствует диффузии СO 2 в СМЖ и внеклеточную жидкость мозга.

В норме рН СМЖ = 7,32. Поскольку содержание белков в этой жидкости намного меньше, чем в крови, ее буферная емкость также существенно ниже. Благодаря этому рН СМЖ в ответ на изменения РCO2 сдвигается гораздо больше, чем рН крови. Если такой сдвиг рН СМЖ сохраняется длительное время, то бикарбонаты переходят через гематоэнцефалический барьер, т. е. происходит компенсаторное изменение концентрации НСО 3 в СМЖ.

В результате рН СМЖ через 24— 48 ч возвращается к норме. Таким образом, изменения рН СМЖ устраняются быстрее, чем в артериальной крови, где они компенсируются почками в течение двух-трех суток. Более быстрое возвращение к норме рН СМЖ по сравнению с рН крови приводит к тому, что именно рН СМЖ оказывает преимущественное влияние на вентиляцию и Р CO2 в артериальной крови.

В качестве примера можно привести больных с хроническими поражениями легких и постоянным повышением Р CO2 в крови. У таких людей рН СМЖ может быть нормальным, поэтому уровень вентиляции у них гораздо ниже, чем следовало бы ожидать, исходя из Р CO2 в артериальной крови. Такую же картину можно наблюдать и у здоровых людей, если заставить их в течение нескольких суток дышать газовой смесью с 3 % СO 2 .

«Физиология дыхания», Дж. Уэст

Дыхание происходит в значительной степени осознано, и в определенных пределах кора головного мозга может подчинять себе стволовые центры. Путем гипервентиляции нетрудно добиться снижения РCO2 в артериальной крови вдвое, хотя при этом возникает алкалоз, иногда сопровождающийся судорожными сокращениями мышц кистей и стоп. При таком снижении РCO2 рН артериальной крови повышается примерно на 0,2. Произвольную гиповентиляцию легких…

Периферические хеморецепторы находятся в каротидных тельцах, расположенных в области бифуркации общих сонных артерий, и в аортальных тельцах, залегающих на верхней и нижней поверхностях дуги аорты. У человека наибольшую роль играют каротидные тельца. В них содержатся две или несколько разновидностей гломерулярных клеток, интенсивно флюоресцирующих при специальной обработке благодаря содержанию допамина. Когда-то считалось, что именно эти клетки…

Существуют три типа рецепторов легких Легочные рецепторы растяжения Полагают, что эти рецепторы залегают в гладких мышцах воздухоносных путей. Они реагируют на растяжение легких. Если легкие длительно удерживаются в раздутом состоянии, то активность рецепторов растяжения изменяется мало, что говорит об их слабой адаптируемости. Импульсация от этих рецепторов идет по крупным миелиновым волокнам блуждающих нервов. Основной ответ…

С дыханием связано еще несколько типов рецепторов Рецепторы носовой полости и верхних дыхательных путей В носовой полости, носоглотке, гортани, трахее находятся реагирующие на механические и химические раздражители рецепторы, которые можно отнести к описанному вышеирритантному типу. Раздражение их рефлекторно вызывает чихание, кашель и сужение бронхов. Механическое раздражение гортани (например, при введении интубационной трубки при плохо проведенной местной…

Мы проанализировали отдельные элементы системы регуляции дыхания. Теперь было бы полезным рассмотреть ее комплексные реакции на изменения РCO2, РO2 и рН артериальной крови, а также физическую нагрузку. Реакции на изменение рН Снижение рН артериальной крови усиливает вентиляцию. На практике часто бывает трудно отделить вентиляторную реакцию на уменьшение рН от реакций на сопутствующее повышение РCO2. Однако…

Мускулатуры, достигается соответствие механических параметров дыхания сопротивлению дыхательной системы, которое возрастает, 1. при уменьшении растяжимости легких, 2. сужении бронхов и голосовой щели, 3. набухании слизистой оболочки носа. Во всех случаях сегментарные рефлексы на растяжение усиливают сокращение межреберных мышц и мышц передней брюшной стенки. У человека импульсация с проприорецепторов дыхательных мышц участвует в формировании ощущения, возникающих при нарушении дыхания. 4.9 Роль хеморецепторов в регуляции дыхания Основное назначение регуляции внешнего дыхания заключается в поддержании оптимального газового состава артериальной крови - напряжения О2, напряжения СО2, и, тем самым, в значительной мере - концентрации водородных ионов. У человека относительное постоянство напряжения газов крови сохраняется даже при физической работе, когда их потребление возрастает в несколько раз, так как при работе вентиляция легких увеличивается пропорционально интенсивности метаболических процессов. Избыток СО2, и недостаток О2 во вдыхаемом воздухе также вызывает увеличение объемной скорости дыхания, благодаря чему парциальное давление О2 и СО2, в альвеолах и в артериальной крови почти не изменяется. 81 Особое место в гуморальной регуляции деятельности дыхательного центра имеет изменение в крови напряжения СО2. При вдыхании газовой смеси, содержащей 5-7% СО2, увеличение парциального давления СО2 в альвеолярном воздухе задерживает выведение СО2 из венозной крови. Связанное с этим повышение напряжения СО2 в артериальной крови приводит к увеличению легочной вентиляции в 6-8 раз. Благодаря такому значительному увеличению объема дыхания, концентрация СО2 в альвеолярном воздухе возрастает не более, чем на 1%. Увеличение содержания СО2 в альвеолах на 0.2% вызывает увеличение вентиляции легких на 100%. Роль СО2, как главного регулятора дыхания, выявляется и в том, что недостаток содержания СО2 в крови понижает деятельность дыхательного центра и приводит к уменьшению объема дыхания и даже к полному прекращению дыхательных движения (апное). Это происходит, например, при искусственной гипервентиляции: произвольное увеличение глубины и частоты дыхания приводит к гипокапнии - снижению парциального давления СО2, в альвеолярном воздухе и артериальной крови. Поэтому после прекращения гипервентиляции появление очередного вдоха задерживается, а глубина и частота последующих вдохов вначале снижается. 4.10 Хемочувствительные рецепторы (центральные и периферические) Изменения газового состава внутренней среды организма оказывают влияние на дыхательный центр опосредованно, через специальные хемочувствительные рецепторы, расположенные непосредственно в 82 структурах продолговатого мозга ("центральные хеморецепторы") и в сосудистых рефлексогенных зонах ("периферические хеморецепторы"). Центральные хеморецепторы Центральными (медуллярными) хеморецепторами, постоянно участву- ющими в регуляции дыхания, называют нейрональные структуры в продолговатом мозге, чувствительные к напряжению СО2, и кислотно- щелочному состоянию омывающей их межклеточной мозговой жидкости. Хемочувствительные зоны имеются на переднебоковой поверхности продолговатого мозга около выходов подъязычного и блуждающего нервов в тонком слое мозгового вещества на глубине 0.2-0.4 мм. Медуллярные хеморецепторы постоянно стимулируются ионами водорода в межклеточной жидкости ствола мозга, концентрация которых зависит от напряжения СО2, в артериальной крови. Спинномозговая жидкость отделена от крови гемато- + энцефалическим барьером, относительно непроницаемым для ионов Н и НСО3 , но свободно пропускающим молекулярный СО2. При повышении напряжения СО2 в крови он диффундирует из кровеносных сосудов головного мозга в спинномозговую жидкость, в результате чего, в ней накапливаются ионы Н, которые стимулируют медуллярные хеморецепторы. При повышении напряжения СО2, и концентрации водородных ионов в жидкости, омывающей медуллярные хеморецепторы, увеличивается активность инспираторных и падает активность экспираторных нейронов дыхательного центра продолговатого мозга. В результате дыхание становится более глубоким и вентиляция легких растет за счет увеличения объема каждого вдоха. 83 Снижение напряжения СО2, и подщелачивание межклеточной жидкости ведет к полному или частичному исчезновению реакции увеличения объема дыхания на избыток СО2, (гиперкапнию) и ацидоз, а также в резкому угнетению инспираторной активности дыхательного центра вплоть до остановки дыхания. Периферические хеморецепторы, воспринимающие газовый состав артериальной крови, расположены в двух областях: дуге аорты и месте деления (бифуркация) общей сонной артерии (каротидный синус), т.е. в тех же зонах, что и барорецепторы, реагирующие на изменения кровяного давления. Хеморецепторы представляют собой самостоятельные образования, заключенные в особых тельцах - клубочках или гломусах, которые находятся вне сосуда. Афферентные волокна от хеморецепторов идут: от дуги аорты - в составе аортальной ветви блуждающего нерва, а от синуса сонной артерии - в каротидной ветви языкоглоточного нерва, так называемом нерве Геринга. Первичные афференты синусного и аортального нерва проходят через ипсилатеральное ядро солитарного тракта. Отсюда хеморецептивные импульсы поступают к дорсальной группе дыхательных нейронов продолговатого мозга. Артериальные хеморецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение напряжения кислорода в крови (гипоксемию). Даже в обычных (нормоксических) условиях эти рецепторы находятся в состоянии 84 постоянного возбуждения, которое исчезает только при вдыхании человеком чистого кислорода. Уменьшение напряжения кислорода в артериальной крови ниже нормального уровня вызывает усиление афферентации из аортальных и синокаротидных хеморецепторов. Вдыхание гипоксической смеси ведет к учащению и увеличению регулярности импульсов, посылаемых хеморецепторами каротидного тельца. Повышению напряжения СО2, артериальной крови и соответствующему подъему вентиляции также сопутствует рост импульсной активности, направляемой в дыхательный центр от хеморецепторов каротидного синуса. Артериальные хеморецепторы ответственны за начальную, быструю, фазу вентиляторной реакции на гиперкапнию. При их денервации указанная реакция наступает позднее и оказывается более вялой, так как развивается в этих условиях лишь после того, как повысится напряжение СО2 области хемочувствительных мозговых структур. Гиперкапническая стимуляция артериальных хеморецепторов, подобно гипоксической, носит постоянный характер. Эта стимуляция начинается при пороговом напряжении СО2 20-30 мм рт.ст и, следовательно, имеет место уже в условиях нормального напряжения СО2, в артериальной крови (около 40 мм рт.ст.). 4.11 Взаимодействие гуморальных стимулов дыхания На фоне повышенного артериального напряжения СО2 или увеличенной концентрации водородных ионов вентиляторная реакция на гипоксемию становится интенсивнее. Поэтому снижение парциального давления кислорода и одновременное повышение парциального давления 85 углекислого газа в альвеолярном воздухе вызывают нарастание легочной вентиляции, превышающее арифметическую сумму ответов, которые вызывают эти факторы, действуя порознь. Физиологическое значение этого явления заключается в том, что указанное сочетание стимуляторов дыхания имеет место при мышечной деятельности, которая сопряжена с максимальным подъемом газообмена и требует адекватного ему усиления работы дыхательного аппарата. Установлено, что гипоксемия снижает порог и увеличивает интенсивность вентиляторной реакции на СО2. Однако, у человека при недостатке кислорода во вдыхаемом воздухе увеличение вентиляции происходит лишь при условии, когда артериальное напряжение СО2 составляет не менее 30 мм рт.ст. При уменьшении парциального давления О2 во вдыхаемом воздухе (например, при дыхании газовыми смесями с низким содержанием О2, при пониженном атмосферном давлении в барокамере или в горах) возникает гипервентиляция, направленная на предупреждение значительного снижения парциального давления О2 в альвеолах и напряжения его в артериальной крови. При этом из-за гипервентиляции наступает снижение парциального давления СО2 в альвеолярном воздухе и развивается гипокапния, приводящая к уменьшению возбудимости дыхательного центра. Поэтому при гипоксической гипоксии, когда парциальное давление СО; во вдыхаемом воздухе снижается до 12 кПа (90 мм рт.ст.) и ниже, система регуляции дыхания может лишь частично обеспечить поддержание напряжения О2 и СО2 на должном уровне. В этих условиях, несмотря на гипервентиляцию, 86 напряжение О2 все же снижается, и возникает умеренная гипоксемия. В регуляции дыхания функции центральных и периферических рецепторов постоянно дополняют друг друга и, в общем, проявляют синергизм. Так, импульсация хеморецепторов каротидного тельца усиливает эффект стимуляции медуллярных хемочувствительных структур. Взаимодействие центральных и периферических хеморецепторов имеет жизненно важное значение для организма, например, в условиях дефицита О2. При гипоксии из-за снижения окислительного метаболизма в мозге чувствительность медуллярных хеморецепторов ослабевает или исчезает, вследствие чего снижается активность дыхательных нейронов. Дыхательный центр в этих условиях получает интенсивную стимуляцию от артериальных хеморецепторов, для которых гипоксемия является адекватным раздражителем. Таким образом, артериальные хеморецепторы служат "аварийным" механизмом реакции дыхания на изменение газового состава крови, и, прежде всего, на дефицит кислородного снабжения мозга. 4.12 Взаимосвязь регуляции внешнего дыхания и других функции организма Обмен газов в легких и тканях и приспособление его к запросам тканевого дыхания при различных состояниях организма обеспечивается путем изменения не только легочной вентиляции, но и кровотока как в самих легких, так и других органах. Поэтому механизмы нейрогуморальной регуляции дыхания и кровообращения осуществляются в тесном 87 взаимодействии. Рефлекторные влияния, исходящие из рецептивных полей сердечно- сосудистой системы (например, синокаротидной зоны), изменяют деятельность как дыхательного, так и сосудодвигательного центров. Нейроны дыхательного центра подвержены рефлекторным воздействиям со стороны барорецепторных зон сосудов - дуги аорты, каротидного синуса. Сосудо- двигательные рефлексы неразрывно связаны и с изменением функции дыхания. Повышение сосудистого тонуса и усиление сердечной деятельности, соответственно, сопровождаются усилением дыхательной функции. Например, при физической или эмоциональной нагрузке у человека обычно имеет место согласованное повышение минутного объема крови в большом и малом круге, артериального давления и легочной вентиляции. Однако, резкое повышение артериального давления вызывает возбуждение синокаротидных и аортальных барорецепторов, которое приводит к рефлекторному торможению дыхания. Понижение артериального давления, например, при кровопотере, приводит к увеличению легочной вентиляции, что вызвано, с одной стороны, снижением активности сосудистых барорецепторов, с другой - возбуждением артериальных хеморецепторов в результате местной гипоксии, вызванной уменьшением в них кровотока. Учащение дыхания возникает при повышении давления крови в малом круге кровообращения и при растяжении левого предсердия. На работу дыхательного центра оказывает влияние афферентация от периферических и центральных терморецепторов, особенно при резких и 88 внезапных температурных воздействиях на рецепторы кожи. Погружение человека в холодную воду, например, тормозит выдох, в результате чего возникает затяжной вдох. У животных, у которых отсутствуют потовые железы (например, у собаки), с повышением температуры внешней среды и ухудшением теплоотдачи увеличивается вентиляция легких за счет учащения дыхания (температурное полипное) и усиливается испарение воды через систему дыхания. Рефлекторные влияния на дыхательный центр весьма обширны, и практически все рецепторные зоны при их раздражении изменяют дыхание. Эта особенность рефлекторной регуляции дыхания отражает общий принцип нейронной организации ретикулярной формации ствола мозга, в состав которой входит и дыхательный центр. Нейроны ретикулярной формации, в том числе и дыхательные нейроны, имеют обильные коллатерали почти от всех афферентных систем организма, что и обеспечивает, в частности, разносторонние рефлекторные влияния на дыхательный центр. На деятельности нейронов дыхательного центра отражается большое количество различных неспецифических рефлекторных влияний. Так, болевые раздражения сопровождаются немедленным изменением дыхательной ритмики. Функция дыхания теснейшим образом связана с эмоциональными процессами: почти все эмоциональные проявления человека сопровождаются изменением функции дыхания; смех, плач - это измененные дыхательные движения. В дыхательный центр продолговатого мозга непосредственно поступает импульсация от рецепторов легких и рецепторов крупных сосудов, 89 т.е. рецептивных зон, раздражение которых имеет особенно существенное значение для регуляции внешнего дыхания. Однако, для адекватного приспособления функции дыхания к меняющимся условиям существования организма система регуляции должна обладать полной информацией о том, что происходит в организме и в окружающей среде. Поэтому для регуляции дыхания имеют значение все афферентные сигналы от разнообразных рецептивных полей организма. Вся эта сигнализация поступает не непосредственно в дыхательный центр продолговатого мозга, а в различные уровни головного мозга, и от них непосредственно может передаваться как на дыхательную, так и на другие функциональные системы. Различные центры головного мозга образуют с дыхательным центром функционально подвижные ассоциации, обеспечивающие полноценное регулирование дыхательной функции. В центральный механизм, регулирующий дыхание, включены разные уровни ЦНС. Значение для регуляции дыхания структур стволовой части мозга, в том числе варолиевого моста, среднего мозга, заключается в том, что эти отделы ЦНС получают и переключают на дыхательный центр проприоцептивную и интероцептивную сигнализацию, а промежуточный мозг - сигнализацию об обмене веществ. Кора больших полушарий, как центральная станция анализаторных систем, вбирает и обрабатывает сигналы от всех органов и систем, делая возможным адекватное приспособление различных функциональных систем, в том числе и дыхания, к тончайшим изменениям жизнедеятельности организма. Своеобразие функции внешнего дыхания заключается в том, что она в одной и той же мере и автоматическая, и произвольно управляемая. Человек 90

Контроль за нормальным содержанием во внутренней среде организма О 2 , СО 2 и рН осуществляется периферическими и центральными хеморецепторами . Адекватным раздражителем для периферических хеморецепторов является уменьшение напряжение О 2 артериальной крови, но в большей степени увеличение напряжение СО 2 и уменьшение рН, а для центральных хеморецепторов – увеличение концентрации Н + во внеклеточной жидкости мозга и напряжения СО 2.

Периферические (артериальные) хеморецепторы находятся в основном в каротидных тельцах, расположенных в области бифуркации общих сонных артерий, и аортальных тельцах, находящихся в верхней и нижней частях дуги аорты. Сигналы от хеморецепторов аорты поступают по аортальной ветви блуждающего нерва, а от хеморецепторов каротидного синуса - по каротидной ветви языкоглоточного нерва (нерв Геринга) к дорсальной группе дыхательных нейронов продолговатого мозга. Более важную роль в возбуждении ДЦ играют хеморецепторы каротидного синуса.

Центральные (медуллярные) хеморецепторы чувствительны к изменению концентрации Н + межклеточной мозговой жидкости. Они постоянно стимулируются Н + , концентрация которых зависит от напряжения СО 2 в крови. При увеличении ионов Н + и напряжения СО 2 увеличивается активность нейронов ДЦ продолговатого мозга, растет вентиляция легких, и дыхание становится более глубоким. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз тормозят центральные хеморецепторы. Центральные хеморецепторы позднее реагируют на изменения газов крови, но возбудившись, обеспечивают прирост вентиляции на 60-80 %.

Отклонения, вызванные изменениями обмена веществ или состава дыхательного воздуха, приводят к изменению активности дыхательных мышц и альвеолярной вентиляции, возвращая значения напряжения О 2 , СО 2 и рН к их должному уровню (приспособительная реакция) (рис.15).

Рис.15. Роль хеморецепторов в регуляции дыхания.

Таким образом, главная цель регуляции дыхания состоит в том, чтобы легочная вентиляция соответствовала метаболическим потребностям организма. Так, при физической нагрузке требуется больше кислорода, соответственно должен возрасти объем дыхания.

Дыхательные нейроны продолговатого мозга

Дыхательный центр (ДЦ) – совокупность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм. В продолговатом мозге имеется 2 скопления дыхательных нейронов: одно из них находится в дорсальной части, недалеко от одиночного ядра – дорсальная дыхательная группа (ДДГ), другое расположено вентральнее, вблизи от двойного ядра – вентральная дыхательная группа (ВДГ), где локализованы центры вдоха и выдоха.

В дорсальном ядре были обнаружены два класса нейронов: инспираторные нейроны типа Iα и Iβ. При акте вдоха возбуждаются оба класса этих нейронов, но выполняют разные задачи:

Инспираторные Iα-нейроны активируют α-мотонейроны диафрагмальной мышцы, и, одновременно, посылают сигналы к инспираторным нейронам вентрального дыхательного ядра, которые в свою очередь, возбуждают α-мотонейроны скелетных дыхательных мышц;

Инспираторные Iβ-нейроны, возможно с помощью вставочных нейронов, запускают процесс торможения Iα-нейронов.

В вентральном ядре были обнаружены два типа нейронов – инспираторные (от них возбуждение идет к альфа-мотонейронам скелетной дыхательной мускулатуры) и экспираторные (активируют экспираторные скелетные мышцы). Среди них были выделены следующие виды нейронов:

1. «ранние» инспираторные – активны в начале фазы вдоха (инспирации);

2. «поздние» инспираторные –активны в конце вдоха;

3. «полные» инспираторные – активны в течение всего вдоха;

4. постинспираторные – максимальный разряд в начале выдоха;

5. экспираторные – активны во вторую фазу выдоха;

6. преинспираторные – активны перед вдохом. Они выключают активную экспирацию (выдох).

Нейроны экспираторного и инспираторного отделов дыхательного центра функционально неоднородны, контролируют разные фазы дыхательного цикла и работают ритмически.

Центральные хеморецепторы обнаружены в продолговатом мозге на вентромедиальной поверхности на глубине не более 0.2 мм. В этой области расположены два рецептивных поля (рисунок 15), обозначаемые буквами M и L, между ними обнаружено небольшое поле S. Поле S не чувствительно к химизму среды, но его разрушение приводит к исчезновению эффектов возбуждения полей M и L, Этой промежуточной зоне принадлежит важная роль в передаче информации от полей M и L непосредственно дыхательным вентральным и дорзальным ядрам, и передаче информации ядрам другой стороны продолговатого мозга.

В этой же области проходят аферентные пути от периферических хеморецепторов. В вентролатеральных отделах, в районе хеморецептивных полей расположены структуры, оказывающие существенное влияние на тонус вегетативной нервной системы. Вероятно, эта зона имеет отношение к интеграции ритма дыхания и легочной вентиляции с системой кровообращения. В частности в зонах S и М есть нейроны, которые имеют связи с грудными сегментами спинного мозга, их раздражение приводит к повышению сосудистого тонуса. Часть нейронов этой области активируется при раздражении аортального и синокаротидного нервов (информация от периферических хемо- и барорецепторов каротидного синуса и дуги аорты), часть нейронов отвечают на раздражение ядер гипоталамуса (информация об осмотической концентрации внутренней среды, температуре). Таким образом, структуры S и М полей интегрируют афферентные сигналы от расположенных выше нейронных образований и передают тонизирующие влияния вазоконстрикторным нейронам спинного мозга. Каудальный отдел, поле L демонстрирует при его электрическом раздражении противоположные эффекты. Вместе с тем существует четкая нейронная обособленность между нейронами, регулирующими функции кровообращения и нейронами, связанными с дыхательным центром.

Рисунок 15. Расположение хеморецепторов на вентральной поверхности продолговатого мозга

M, L, S поля, участвующие в хеморецепции.

Р – мост,

П – пирамида,

V и XII – черепномозговые нервы,

С1 первый спинномозговой корешок

В настоящее время совершенно точно установлено, что центральные хеморецептивные нейроны возбуждаются только при действии на них ионов водорода. Каким же образом повышение напряжения СО 2 приводит к возбуждению этих структур? Оказывается хемочувствительные нейроны расположены во внеклеточной жидкости и воспринимают изменения рН, вызванные динамикой СО 2 в крови.

Вентролатеральные отделы продолговатого мозга представлены нервными клетками, астроцитарной глией, развитой мягкой мозговой оболочкой и окружены тремя средами мозга: кровью, ликвором и внеклеточной жидкостью (рисунок 16). Среди нейронов выявляются крупные мультиполярные клетки и мелкие, округлые. Оба типа нейронов образуют небольшое ядро, которое контактирует с прилежащими ядрами ретикулярной формации. Крупные мультиполярные нейроны имеют периваскулярную локализацию и их отростки располагаются вблизи стенок микрососудов. В механизме хеморецепции в настоящее время остается много непонятного. Перечислим факты, которые установлены и помогают объяснить этот механизм


Мультиполярные нейроны всегда увеличивают свою метаболическую и электрическую активности при гиперкапнии и при локальном повышении концентрации ионов водорода во внеклеточной жидкости, омывающей эти нейроны.

Между напряжением СО 2 в альвеолярном воздухе и в артериальной крови, с одной стороны, и рН внеклеточной жидкости мозга с другой стороны существует линейная зависимость.

И гиперкапния, и локальное повышение рН внеклеточной жидкости всегда сопровождаются дыхательной реакцией - увеличение глубины и частоты дыхания.

Между ликвором и кровью существует незначительная, но устойчивая разность потенциалов.

Снижение рН приводит к изменению этой разности потенциалов.

Существует градиент концентрации по ионам водорода между кровью и внеклеточной жидкостью - во внеклеточной жидкости ионов водорода больше. Градиент поддерживается активным переносом протонов из крови во внеклеточную жидкость.

На границе между кровью и внеклеточной жидкостью высока активность фермента карбоангидразы.

Эндотелий сосудов, граничащий с внеклеточной жидкостью в области хеморецептивных полей не проницаем для ионов Н + и НСО 3 - но хорошо проницаем для СО 2 .

Приблизительно схему событий можно представить следующим образом: 1) повышение концентрации СО 2 в крови и его свободная диффузия через зону с высокой карбоангидразной активностью 2) СО 2 соединяется с Н 2 О под влиянием карбоангидразы, затем диссоциирует с освобождением Н +. 3) накопление во внеклеточной жидкости ионов водорода приводит к повышению активности мультиполярных нейронов.

Одновременно происходит уменьшение разности потенциалов между кровью и ликвором. Эти события служат мощным афферентным стимулом для дыхательного центра. Следует обратить внимание на высокую чувствительность всех структур к изменению рН - изменение потенциала и дыхательная реакция отмечаются при снижении рН крови на 0.01 единицу. Высока и надежность этих структур - мультиполярные нейроны способны изменять свою активность в диапазоне рН от 7 до 7,8 , такие изменение в норме невозможны.

Рисунок 16 Локализация мультиполярных нейронов (хемосенсоров) относительно внутренних сред мозга: крови, внеклеточной жидкости мозга и ликвора.

Н1 – крупный мультиполярный нейрон, Н2 мелкий мультиполярный нейрон,

Итак, важнейшим физиологическим свойством центрального хеморецептивного механизма является изменение активности нейронов в прямой зависимости от концентрации ионов водорода во внеклеточной жидкости мозга. Основная задача этого механизма - информировать дыхательный центр об отклонения рН, а следовательно, и концентрации СО 2 в крови. Обратите внимание на то, что саморегулирование в этом случае будет осуществляться по принципу отклонения от физиологической нормы.

Вам также будет интересно:

Монгольское завоевание и его влияние на историю России
Рождение Монгольской империи . В начале XIII в. на Русь стали доходить смутные слухи о...
Знаменитые русские судебные ораторы Ораторы 19 века
Ораторское искусство помогает человеку донести до других свои мысли и убеждения ярко,...
Понятие «премия» и основания для ее выплаты Премия есть одной из самых
Накануне Дня российской науки в Москве наградили лучших популяризаторов и научных...
Волшебные ритуалы и обряды в полнолуние
Эта фаза Луны является самой сильной. В Полнолуние ритуалы на привлечение денег работают...