Сайт о холестерине. Болезни. Атеросклероз. Ожирение. Препараты. Питание

Гороскоп козерог на май майл

Отставка Медведева или роспуск Госдумы: Россию ожидают серьезные изменения

Медведев испугался отставки

Отпуск на основной работе и по совместительству: особенности предоставления

Характеристика мужчин и женщин козерогов в год змеи

К чему снится грязный унитаз

Нашел клад К снится клад во сне

Сонник пальцы, к чему снится пальцы, во сне пальцы

Кабачки как грибы: рецепты заготовок на зиму с пошаговыми фото Как закрыть кабачки со вкусом грибов

Список продуктов питания понижающие артериальное давление

Молитвы при глазных болезнях

Трансферин с низким уровнем гликирования (CDT): лабораторный критерий злоупотребления алкоголем Кровь на сдт в наркологии

Молитва пред иконой всецарица от рака

Драники кабачковые: рецепт приготовления с фото Деруны из картошки и кабачков

Цыпленок в фольге в мультиварке Как приготовить цыпленка табака в мультиварке скороварке

Стареющие клетки. Причина старения клеток

Старение представляет собой сложный и разнообразный процесс, который по разному влияет на разных людей и даже разные органы. Большинство геронтологов (люди, которые изучают старение) считают, что старение является кумулятивным эффектом взаимодействия многих прижизненных факторов. Эти факторы включают наследственность, влияние окружающей среды, культурное влияние, диеты, физическую активность и отдыха, перенесенные заболевания и многие другие факторы.

Все жизненно важные органы начинают терять некоторые функции с возрастом. Возрастные изменения были обнаружены во всех клетках тела, тканях и органах, и эти изменения влияют на функционирование всех систем организма. Живая ткань состоит из клеток. Есть много различных типов клеток, но все они имеют одинаковую структуру. Ткани - это слои подобных клеток, которые выполняют определенную функцию. Различные виды групп тканей сформированы в органы.

Как стареет организм человека

Существуют четыре основных типа тканей:

    Соединительная ткань , она поддерживает другие ткани и связывает их вместе. Она включает в себя кости, кровь и лимфатические ткани в дополнение к тканям, которые дают поддержку и структуру кожи и внутренних органов.

    Эпителиальная ткань обеспечивает покрытие на более глубоких слоях тела. Кожа и поверхность различных проходов внутри тела из эпителиальной ткани.

    Мышечная ткань состоит из трех типов тканей:

Поперечнополосатых мышц, таких как те, которые движут скелет.

Гладкие мышцы, такие как мышцы, которые окружают желудок и другие внутренние органы.

Сердечная мышца, которая составляет большую часть сердечной.

    Нервные ткани состоят из нервных клеток (нейронов) и используется для передачи сообщений от различных частей тела. Мозг состоит из нервной ткани.

Клетки являются основными строительными блоками тканей. Все клетки испытывают изменения с возрастом. Они становятся крупнее и в меньшей степени способны к делению и размножению. Среди других изменений, увеличение пигментов и жирных кислот внутри клетки (липидов). Многие клетки теряют способность выполнять свои функции, или они начинают функционировать неправильно.

С возрастом отходы накапливаются в тканях. Жирные коричневый пигмент липофусцин собирается во многих тканях, как и другие жирные вещества.

Соединительная ткань претерпевает изменения, становится все более жесткой. Это делает органы, кровеносные сосуды, дыхательные пути менее эластичными. Изменения клеточных мембран так же происходят, поэтому многие ткани имеют проблемы с получением кислорода и питательных веществ, избавлением от углекислого газа и отходов.

Многие ткани теряют массу. Этот процесс называется атрофией. Некоторые ткани становятся узловыми или более жесткими.

Наиболее значительные изменения происходят сердце, легких и почках. Эти изменения появляются медленно и на протяжении длительного периода времени. Когда органы работают на пределе своих возможностей, он не может увеличить свои функции. Внезапная сердечная недостаточность или другие проблемы могут развиваться, когда организм работает сложнее, чем обычно.

Факторы, создающие дополнительную нагрузку на организм:

    Некоторые лекарства

  • Значительные изменения в жизни

  • Внезапное изменение в деятельности

    Подъем на большую высоту

С осторожностью нужно принимать различные лекарственные препараты в зрелом возрасте , т.к. велик риск получения побочных эффектов от их применения со стороны других органов.

Побочные эффекты лечения могут имитировать симптомы многих заболеваний, поэтому легко ошибиться реакцией препарата на болезнь . Некоторые препараты имеют совершенно разные побочные эффекты у пожилых, чем у молодых людей.

Теория старения клеток

Никто не знает, как и почему люди меняются, как они становятся старше. Некоторые теории утверждают, что старение связано с накопленной травмой от ультрафиолетового излучения, износом организма, с побочным действием продуктов обмена веществ, и так далее. Другие теории старения организма предполагают генетически контролируемый процесс. Тем не менее, ни одна теория не объясняет достаточно убедительно изменения, происходящие в процессе старения.

Старение представляет собой сложный и разнообразный процесс, который по разному влияет на разных людей и даже разные органы. Большинство геронтологов (люди, которые изучают старение) считают, что старение является кумулятивным эффектом взаимодействия многих прижизненных факторов . Эти факторы включают наследственность, влияние окружающей среды, культурное влияние, диеты, физическую активность и отдыха, перенесенные заболевания и многие другие факторы.

В отличие от изменений в подростковом возрасте, которые предсказуемы с точностью до нескольких лет, каждый человек в возрасте стареет по-своему. Некоторые системы начинают стареть уже в 30 лет. Другие процессы старения происходят намного позже. Хотя некоторые изменения, как правило, происходят с возрастом, они происходят с разной скоростью и в разной степени. Не существует надежного способа предсказать, в частности, как вы будете меняться с возрастом.

Атрофия

Клетки сокращаются. Если достаточное количество клеток уменьшаются в размерах, это свидетельствует об атрофии органа. Это часто является нормальным возрастным изменением, которое может произойти в любой ткани. Это наиболее распространено в скелетных мышцах, сердце, мозге, и вторичных половых органах (например, груди).

Причина атрофии неизвестна, но вероятны следующие причин: снижение нагрузки, уменьшение кровоснабжения и питания клеток, а также снижение стимуляции нервов и гормонов.

Гипертрофия

Клетки увеличиваются. Это увеличение размера связано с увеличением клеточных белков , таких как клеточная стенка и внутренние структуры клетки, а не увеличение жидкости клетки.

Когда некоторые клетки атрофируются, другие могут гипертрофироваться в попытке компенсировать потери клеточной массы.

Гиперплазия

Число клеток увеличивается. Существует увеличение скорости деления клеток.

Гиперплазия обычно происходит в попытке компенсировать потерю клеток. Это позволяет некоторым органам и тканям сохранять способность регенерации, в том числе кожи, слизистой оболочки кишечника, печени и костного мозга. Печень особенно хорошо регенерируется. Она может заменить до 70% от ее структуры в течение 2 недель после травмы.

Другие ткани имеют ограниченную способность к регенерации , например кости, хрящи и гладких мышц (например, мышцы вокруг кишечника).

Существуют ткани, которые редко или вообще не восстанавливаются , среди них нервы, скелетные мышцы, сердечная мышца, и хрусталик глаза. При повреждении эти ткани заменяются рубцовой тканью.

Дисплазия

Размеры, формы или организация зрелых клеток становится ненормальной. Это также называется атипичной гиперплазией. Дисплазия является довольно распространенной в клетках шейки матки и слизистой оболочки дыхательных путей.

Неоплазия

Образование опухолей, таких как раковые (злокачественные) или доброкачественные (доброкачественное ). Опухолевые клетки часто воспроизводятся очень быстро. Они могут иметь необычные формы и нарушенные функции.опубликовано .

Если у вас возникли вопросы, задайте их

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

Ученым давно было интересно, как происходит старение на клеточном уровне. Современные методы исследований дали возможность понять, как происходит клеточное старение. А также понять, есть ли надежда, что когда-нибудь человечество сможет избежать болезней, старения и смерти. Как происходит клеточное старение?

Механизм старения клеток

Исследователи изучили механизм старения клеток. Этот вопрос всегда был темой особого внимания ученых, так как они хотели узнать, почему люди болеют, стареют и умирают, а также можно ли избежать старения. Проще сказать, можно ли вылечить старость и всегда оставаться молодым.

Во время проведения исследований ученые установили, что клеточное старение происходит по причине потери клетками способности делиться и восстанавливать ткани организма. Процесс старения в клетках вызывается за счет самоускоряющегося повреждения генома, которое способствует нарушению в ДНК, что приводит к выбросу веществ, которое активизирует новые нарушения в коде ДНК.

Механизм старения стал понятен благодаря построению математической модели живой клетки организма. Ученые из университета Ньюкасла (Британия) и университета Ульма (Германия) использовали для этого последние достижения в сфере лабораторных исследований, с помощью которых и был обнаружен процесс старения клеток. Старение клеток напрямую связано с нарушением способности клетки к делению, живые ткани при этом перестают регенерироваться и выполняют свои функции все менее эффективно. Помимо этого, клеточное старение способствует хаотичному размножению клеток, а это приводит к развитию онкологических заболеваний.

Молекулярный механизм старения клеток происходит из-за существования так называемой динамической петли обратной связи, которая запускает реакцию повреждения ДНК, через несколько дней это явление приводит клетку в состояние глубокой клеточной старости.

Спираль старения, которая запущена повреждением ДНК, приводит к расстройству функций клеточных митохондрий, перерабатывающих кислород и питательные вещества в молекулы аденозинтрифосфата, который и является источником энергии для большинства биохимических процессов организма. Поврежденные митохондрии образуют большое количество химически активных частиц (свободных радикалов), они также способствуют повреждению ДНК, которое снова провоцируют выброс свободных радикалов. Таким образом, этот процесс нарастает, вскоре клетка теряет способности делиться и стареет.

Можно ли остановить старение?

Изучив механизм старения клеток, ученые пришли к выводу, что полученные в исследовании результаты помогут создать лекарства, которые способны оказать воздействие на процесс старения, происходящий в клетках. А это дает надежду, что в будущем человечество избавится от многих заболеваний, которые связаны со старением организма. Можно ли остановить старение? Вероятно, все же – нет!

Мало кому известно, но в XVIII веке средняя составляла всего 24 года. Через 100 лет это число увеличилось вдвое - до 48 лет. Сейчас новорожденный может в среднем прожить 76 лет. С учетом последних открытий в биологии, ученые считают, что эта цифра будет еще долго неизменна.

Введение

Сегодня поиски «молодильных яблок» и ответа на вопрос о том, почему сконцентрированы в области изучения генетической структуры клеток, и при этом все меньше обращается внимание на роль стрессов и диет в жизни людей. Желающие достичь бессмертия обращаются в антивозрастные клиники, выплачивая каждый год по 20 000 долларов за гормональную терапию, анализ ДНК и космическую хирургию. Однако эти экспериментальные методы не дают никаких гарантий бессмертия - просто специалисты обещают продлить жизнь.

Давайте вместе узнаем, когда и почему стареет человек, какие бывают признаки и причины старения и как замедлить процесс старения.

Понятие «старения»

Слово «старость» в настоящее время ассоциируется с омолаживающими косметическими средствами и хирургическими операциями. Это связано с тем, что современная наука больше нацелена на изучение космических пространств и изобретение новейших технологий. О бессмертии просто забыли.

Но доктор Джон Ленгмор, профессор университета Мичиган, и его группа «заглянули» внутрь клеток, в самую сущность человеческой жизни. В частности, он изучил молекулу ДНК и обнаружил на ее концах цепь повторяющихся пар ферментов, которые были впоследствии названы «теломерами». Они работают в качестве защитных «колпачков» на конце хромосом, которые со временем не дают возможность молекулам разделиться пополам, что и приводит к старению и умиранию человека.

Что такое «теломеры»

Ученые отмечают, что, когда человек становится старше, длина теломерных цепей уменьшается. В конце концов они становятся настолько короткими, что репликация клеток вызывает смертельные ошибки или недостающие фрагменты в последовательности ДНК, препятствуя способности клетки заменить себя. Эта точка предела, когда клетка потеряла жизненный код ДНК и не может воспроизвести себя, называется пределом Хейфлика. Это мера того, сколько раз клетка может копировать себя, прежде чем умрет.

Некоторые клетки в нашем организме имеют очень высокий предел Хейфлика. Например, клетки, которые находятся внутри нашего рта и в кишечнике, постоянно стираются и заменяются. Действительно, они появляются, чтобы иметь возможность вырастить теломеры даже в зрелом возрасте. Тогда ученые заинтересовались, почему некоторые клетки препятствуют росту теломер с возрастом, а некоторые нет.

«Запрограммированные» клетки

Доктор Ленгмор, используя физические, биохимические и генетические методы для изучения структуры и функции теломеров, разработал бесклеточную систему для восстановления функциональной модели теломеров с использованием синтетической ДНК. А также выявил механизм, с помощью которого теломеры могут «стабилизироваться», и условия, которые приводят к их нестабильности.

Белковые факторы, «ответственные» за стабилизацию концов хромосом, были клонированы и изучены. дала возможность непосредственно визуализировать структуру модели теломер. Это интересное исследование привело ко многим перспективным открытиям.

Ученые обнаружили важный фермент, который может «выключить» теломеры, чтобы молекула ДНК смогла бесконечно раздваиваться. Он называется теломераза. Но, когда мы становимся старше, количество теломераз в клетках уменьшается. Это и есть ответ на вопрос о том, почему стареет организм человека.

Пять основных теорий

Итак, ученые доказали, что смерть наступает в связи с потерей большого количества клеток. Существует несколько теорий, которые объясняют, как предел Хейфлика выражается в клетках нашего организма. Рассмотрим их подробнее:

1. Гипотеза об ошибке. Данная теория определяет ошибки, которые могут возникнуть в химических реакциях при производстве ДНК и РНК, так как метаболический механизм не является точным на 100 %. Гибель клеток может быть результатом этих неустраненных ошибок.

2. Теория свободных радикалов. Отвечает на вопрос о том, почему стареет человек, по-своему. Неконтролируемые могут повредить мембраны, которые окружают клетки и клеточные молекулы ДНК и РНК. Этот ущерб в конечном итоге приводит к гибели клетки.

В настоящее время эта теория горячо исследуется. Опыты на мышах показали, что снижение на 40 % потребления калорий приводит к удвоению их продолжительности жизни и уменьшению количества свободных радикалов. К тому же ученые выявили, что витамины Е и С хорошо их поглощают.

3. Теория сшивания утверждает, что старение живых организмов обусловлено случайным образованием (путем сшивания) «мостиков» между молекулами белка, которые затем препятствуют процессу производства РНК и ДНК. Это сшивание может быть вызвано многими химическими веществами, появляющимися обычно в клетках в результате метаболизма, а также с помощью загрязняющих веществ (например, свинца и табачного дыма).

4. Мозговая гипотеза отвечает на вопрос о том, почему люди быстро стареют, по-иному. Это происходит из-за «поломки» в гомеостазе функций организма, особенно в контроле гипоталамуса над гипофизом, который, в свою очередь, вызывает расстройство в контроле над эндокринными железами.

5. Аутоимунная теория. Она была предложена доктором Рой Валфордом в Лос-Анджелесе, который предполагает, что два типа белковых кровяных клеток иммунной системы (В и Т) теряют свою энергию из-за «нападения» бактерий, вирусов и раковых клеток. А когда В- и Т-клетки становятся неисправными, они заражают здоровые клетки организма.

Почему стареет человек: причины и признаки

В какой-то момент жизни, часто ближе к 30 годам, сигнальные признаки старения начинают быть очевидными. Их можно увидеть во всем: на коже появляются морщины, снижается прочность и гибкость костей и суставов, сердечно-сосудистая, пищеварительная и нервная системы подвергаются изменениям.

Пока никто не может точно сказать, почему стареет человек. Но определенно выявлено, что генетика, диеты, физические упражнения, болезни и другие факторы влияют на этот процесс.

Внимательно ознакомимся с признаками и причинами старения основных систем организма:

1. Клетки, органы и ткани:

Теломеры, которые находятся на концах хромосом внутри каждой клетки, со временем препятствуют раздвоению молекулы ДНК;

Накапливаются отходы в клетках;

Соединительная ткань становится более жесткой;

Максимальная функциональная способность многих

2. Сердце и кровеносные сосуды:

Стенка сердца становится толще;

Сердечные мышцы начинают работать менее эффективно, перекачивая то же количество крови;

Аорты становятся толще, жестче и менее гибкими;

Артерии медленнее снабжают кровью сердце и мозг, что является причиной того, почему стареет человек, признаки очевидны.

3. Жизненно важные функции:

Телу становится труднее контролировать температуру;

Частота сердечных сокращений занимает больше времени, чтобы вернуться к нормальному состоянию после тренировки.

4. Кости, мышцы, суставы:

Кости становятся тоньше и менее сильными;

Суставы - более жесткими и менее гибкими;

Хрящи в костях и суставах начинают ослабевать;

Мышечная ткань также теряет свою силу, это объясняет, почему стареет человек, причины данного процесса.

5. Пищеварительная система:

Желудок, печень, поджелудочная железа и тонкая кишка вырабатывают значительно меньше пищеварительных соков;

Движение пищи через пищеварительную систему замедляется.

6. Мозг и нервная система:

Число нервных клеток в головном и спинном мозге уменьшается;

В головном мозге могут образоваться аномальные структуры, такие как «бляшки» и «клубки», что приводят к ухудшению его работоспособности;

Число соединений между нервными клетками уменьшается.

7. Глаза и уши:

Сетчатка становится тоньше, а зрачки - жестче;

Линзы менее четкими;

Стены слухового прохода становятся тоньше, а барабанные перепонки - толще.

8. Кожа, ногти и волосы:

Кожа с возрастом станет тоньше и менее эластичной, что является причиной того, почему люди стареют внешне;

Потовые железы производят меньше пота;

Ногти растут медленнее;

Волосы получают серый окрас, а некоторые даже перестают расти.

Симптомы старения

Существуют общие симптомы старения, которые включают в себя такие:

Повышенная восприимчивость к инфекциям;

Незначительное снижение роста;

Повышенный риск получения теплового удара или гипотермии;

Кости легче ломаются;

Сутулость;

Замедленное движение;

Снижение общей энергии;

Запор и недержание мочи;

Незначительное замедление процесса мышления и ухудшение памяти;

Снижение координации;

Ухудшение остроты зрения и уменьшение периферического зрения;

Потеря слуха;

Провисание и сморщивание кожи;

Поседение волос;

Влияние сахара

Людям, которые любят сладкое, будет неприятно узнать, что сахар «ускоряет» нашу старость. Если вы потребляете его в большом количестве, то в скором времени быстро наберете вес, а ваше тело станет более восприимчивым к хроническим заболеваниям. Они, конечно же, будут медленно «внедряться» в жизнь человека в течение длительного времени. Однако каждое хроническое заболевание негативно влияет на все клетки в организме. Что и становится причиной того, почему человек медленно стареет.

Курение

Даже ребенку известно, что курение вредно для здоровья. В Новой Зеландии, например, ежегодно умирает 5 000 человек из-за неблагоприятных последствий курения (в том числе и пассивного). Это 13 человек в день!

Каждая выкуренная сигарета будет прибавлять морщины на вашем лице. А в сочетании с большим количеством солнечного света еще и способствовать появлению отмирающих клеток на коже.

Развод

Да, вы не ошиблись! Разрыв с тем, кого вы сильно любили, безусловно, оказывает негативное воздействие не только на ваше психологическое состояние, но и на внешность и здоровье.

В 2009 году ученые провели исследования с идентичными близнецами, в результате которых выяснилось, что разлученные пары выглядят намного старше, чем те, которые всегда были вместе.

Воздействие солнца

Солнечные лучи положительно влияют на организм человека, но до определенной степени. Они могут стать причиной появления морщин на коже, тогда станет понятно, почему одни люди стареют быстрее других.

Избыток солнца может привести к эластозу (снижению эластичности кожи) и к появлению многочисленных пигментных пятен на лице.

Фобии и стрессы

В недавних исследованиях было установлено, что личные фобии и переживания ускоряют старение и прибавляют несколько лет к вашему внешнему виду. Хронический стресс приводит к постоянному высвобождению которые оказывают негативное воздействие на внутренние органы и ткани. А также способствуют образованию свободных радикалов, что и становятся причиной того, почему люди быстро стареют.

Как замедлить биологические часы

1. Научитесь управлять своими страхами и справляться с переживаниями.

2. Ограничение потребления калорий существенно замедляет вашу старость. Предварительные результаты исследований на обезьянах показали, что рациональные диеты могут «притормозить» возрастные физиологические изменения.

3. Регулярно делайте физические упражнения. Ведь именно они способствуют выделению гормонов роста.

4. Старайтесь каждый день высыпаться. Только во время сна мы можем полностью восстановить все свои силы.

5. Расслабляйтесь. Выберите подходящий для вас способ релаксации. Возможно, это будут танцы, чтение книг, слушание музыки или просто приемы горячих ванн.

И в заключение можно сказать, что все мы будем стареть, нравится нам это или нет. Но мы теперь знаем, как замедлить этот процесс, даже на клеточном уровне. Нужно не только вести здоровый образ жизни, но и свести к минимуму все факторы, которые негативно влияют на наш организм.

Статья на конкурс «био/мол/текст»: Уже более 50 лет прошло с тех пор, как на культуре фибробластов доказан феномен старения клеток, но существование старых клеток в организме долгое время подвергалось сомнению. Не было доказательств, что старение отдельных клеток играет важную роль в старении всего организма . В последние годы были открыты молекулярные механизмы старения клеток, их связь с онкологическими заболеваниями и воспалением. По современным представлениям, воспаление играет ведущую роль в генезе практически всех возраст-зависимых заболеваний, которые в конечном итоге приводят организм к смертельному исходу. Оказалось, что старые клетки, с одной стороны, выступают в качестве супрессоров опухолей (поскольку необратимо перестают делиться сами и снижают риск трансформации окружающих клеток), а с другой - специфический метаболизм старых клеток может вызывать воспаление и перерождение соседних предраковых клеток в злокачественные. В настоящее время проходят клинические испытания лекарственных препаратов, избирательно элиминирующих старые клетки в органах и тканях, тем самым предотвращая дегенеративные изменения органов и рак.

В организме человека присутствует примерно 300 типов клеток, и все они делятся на две большие группы: одни могут делиться и размножаться (то есть, они митотически компетентны ), а другие - постмитотические - не делятся: это достигшие крайней стадии дифференцировки нейроны, кардиомиоциты, зернистые лейкоциты и другие.

В нашем организме существуют обновляющиеся ткани, в которых есть пул постоянно делящихся клеток, которые заменяют отработанные или погибающие клетки. Такие клетки есть в криптах кишечника, в базальном слое эпителия кожи, в костном мозге (кроветворные клетки). Обновление клеток может происходить довольно интенсивно: так, клетки соединительной ткани в поджелудочной железе заменяются каждые 24 часа, клетки слизистой желудка - каждые три дня, лейкоциты - каждые 10 дней, клетки кожи - каждые шесть недель, примерно 70 г пролиферирующих клеток тонкого кишечника удаляется из организма ежедневно .

Стволовые клетки, существующие практически во всех органах и тканях, способны делиться неограниченно. Регенерация тканей происходит за счет пролиферации стволовых клеток, которые могут не только делиться, но и дифференцироваться в клетки той ткани, регенерация которой происходит. Стволовые клетки есть в миокарде, в головном мозге (в гипокампе и в обонятельных луковицах) и в других тканях. Это открывает большие надежды в плане лечения нейродегенеративных заболеваний и инфаркта миокарда .

Постоянно обновляющиеся ткани способствуют увеличению продолжительности жизни. При делении клеток происходит омоложение тканей: новые клетки приходят на место поврежденных, при этом интенсивнее происходит репарация (устранение повреждений ДНК) и возможна регенерация при повреждении тканей. Не удивительно, что у позвоночных значительно выше продолжительность жизни, чем у беспозвоночных - тех же насекомых, у которых во взрослом состоянии клетки не делятся.

Но в то же время обновляющиеся ткани подвержены гиперпролиферации, что ведет к образованию опухолей, в том числе - злокачественных. Это происходит из-за нарушений регуляции деления клеток и повышенной частоты мутагенеза в активно делящихся клетках. По современным представлениям, чтобы клетка приобрела свойство злокачественности, ей необходимо 4–6 мутаций . Мутации возникают редко, и для того, чтобы клетка стала раковой - это подсчитано для фибробластов человека - должно произойти около 100 делений (такое число делений обычно происходит у человека примерно в возрасте 40 лет) .

Стоит, в прочем, помнить, что мутация мутации рознь, и согласно новейшим геномным исследованиям в каждом поколении человек приобретает около 60 новых мутаций (которых не было в ДНК у его родителей). Очевидно, что большая часть из них вполне нейтральная (см. «Перевалило за тысячу: третья фаза геномики человека »). - Ред.

В целях защиты от самого себя, в организме сформировались специальные клеточные механизмы супрессии опухолей . Один из них - репликативное старение клеток (сенесценция ), заключающееся в необратимой остановке деления клетки в стадии G1 клеточного цикла . При старении клетка перестает делиться: она не реагирует на ростовые факторы и становится устойчивой к апоптозу.

Лимит Хейфлика

Феномен старения клеток был впервые открыт в 1961 г. Леонардом Хейфликом с коллегами на культуре фибробластов. Оказалось, что клетки в культуре фибробластов человека при хороших условиях живут ограниченное время и способны удваиваться примерно 50±10 раз, - и это число стали называть лимитом Хейфлика , . До открытия Хейфлика господствовала точка зрения, что клетки бессмертны, а старение и смерть - это свойство организма в целом.

Эта концепция считалась неопровержимой во многом благодаря экспериментам Карреля, который поддерживал культуру клеток сердца цыпленка 34 года (ее выбросили лишь после его смерти). Однако, как выяснилось впоследствии, бессмертие культуры Карреля было артефактом, поскольку вместе с эмбриональной сывороткой, которая добавлялась в культуральную среду для роста клеток, туда попадали и сами эмбриональные клетки (и, скорее всего, культура Карреля стала уже далеко не тем, чем была в начале).

По-настоящему бессмертными являются раковые клетки. Так, клетки HeLa , выделенные в 1951 г. из опухоли шейки матки Генриетты Лакс , до сих пор используются цитологами (в частности, c помощью клеток HeLa была разработана вакцина против полиомиелита). Эти клетки даже побывали в космосе.

О захватывающей истории бессмертия Генриетты Лакс см. в статье «Бессмертные клетки Генриетты Лакс », а также «Наследники клеток HeLa ». - Ред.

Как выяснилось, лимит Хейфлика зависит от возраста: чем старше человек, тем меньшее число раз удваиваются его клетки в культуре. Интересно, что замороженные клетки при разморозке и последующем культивировании как будто помнят число делений до замораживания. Фактически, внутри клетки существует «счетчик делений», и по достижении определенного предела (лимита Хейфлика) клетка перестает делиться - становится сенесцентной. Сенесцентные (старые) клетки имеют специфическую морфологию - они крупные, уплощенные, с большими ядрами, сильно вакуолизированы, у них меняется профиль экспрессии генов. В большинстве случаев они устойчивы к апоптозу.

Однако старение организма нельзя свести только к старению клеток. Это значительно более сложный процесс. Старые клетки есть и в молодом организме, но их мало! Когда же с возрастом сенесцентные клетки накапливаются в тканях, начинаются дегенеративные процессы, которые приводят к возраст-зависимым заболеваниям. Один из факторов этих заболеваний - так называемое старческое «стерильное» воспаление , которое связано с экспрессией провоспалительных цитокинов старыми клетками.

Еще один важный фактор биологического старения - строение хромосом и их кончиков - теломеров.

Теломерная теория старения

Рисунок 1. Теломеры - концевые участки хромосом. Поскольку хромосом у человека 23 пары (то есть, 46 штук), теломер получается 92.

В 1971 году наш соотечественник Алексей Матвеевич Оловников предположил, что лимит Хейфлика связан с «недорепликацией» концевых участков линейных хромосом (они имеют специальное название - теломеры ). Дело в том, что в каждом цикле деления клетки теломеры укорачиваются из-за неспособности ДНК-полимеразы синтезировать копию ДНК с самого кончика , . Кроме того, Оловников предсказал существование теломеразы (фермента, добавляющего повторяющиеся последовательности ДНК на концы хромосом), исходя из того факта, что иначе в активно делящихся клетках ДНК быстро бы «съелась», и генетический материал был бы утерян. (Проблема в том, что активность теломеразы угасает в большинстве дифференцированных клеток.)

Теломеры (рис. 1) играют важную роль: они стабилизируют кончики хромосом, которые иначе, как говорят цитогенетики, стали бы «липкими», т.е. подверженными разнообразным хромосомным аберрациям, что приводит к деградации генетического материала. Теломеры состоят из повторяющихся (1000–2000 раз) последовательностей (5′-TTAGGG-3′), что в сумме дает 10–15 тысяч нуклеотидных пар на каждый хромосомный кончик. На 3′-конце теломеры имеют довольно длинный однонитевой участок ДНК (150–200 нуклеотидов), участвующий в образовании петли по типу лассо , (рис. 2). С теломерами связано несколько белков, образующих защитный «колпачок» - этот комплекс называется шелтерином (рис. 3). Шелтерин предохраняет теломеры от действия нуклеаз и слипания и, видимо, именно он сохраняет целостность хромосомы.

Рисунок 2. Состав и структура теломер. Многократное деление клетки в случае отсутствия активности теломеразы ведет к укорочению теломер и репликативному старению .

Рисунок 3. Строение теломерного комплекса (шелтерина ). Теломеры находятся на концах хромосом и состоят из тандемных повторов TTAGGG, которые заканчиваются 32-членным выступающим одноцепочечным фрагментом. С теломерной ДНК связан шелтерин - комплекс из шести белков: TRF1, TRF2, RAP1, TIN2, TPP1 и POT1.

Незащищенные концы хромосом воспринимаются клеткой как повреждение генетического материала, что активирует репарацию ДНК . Теломерный комплекс вместе с шелтерином «стабилизирует» хромосомные кончики, защищая всю хромосому от разрушения. В сенесцентных клетках критическое укорочение теломер нарушает эту защитную функцию , в связи с чем начинают формироваться хромосомные аберрации, которые часто приводят к малигнизации. Чтобы этого не произошло, специальные молекулярные механизмы блокируют клеточное деление, и клетка переходит в состояние сенесцентности - необратимой остановки клеточного цикла. При этом клетка гарантированно не может размножаться, а значит, не сможет и сформировать опухоль. В клетках с нарушенной способностью к сенесценции (которые размножаются, несмотря на дисфункцию теломер), образуются хромосомные аберрации.

Длина теломер и скорость их укорочения зависит от возраста. У человека длина теломер варьирует от 15 тысяч нуклеотидных пар (т.н.п.) при рождении до 5 т.н.п. при хронических заболеваниях. Длина теломер максимальна у 18-месячных детей, а затем она быстро снижается до 12 т.н.п. к пятилетнему возрасту. После этого скорость укорачивания снижается .

Теломеры укорачиваются у разных людей с разной скоростью. Так, на эту скорость сильно влияют стрессы. Э. Блекберн (лауреат Нобелевской премии по физиологии и медицине 2009 г.) установлено, что женщины, постоянно испытывающие стресс (например, матери хронически больных детей), имеют значительно более короткие теломеры по сравнению со сверстницами (примерно на десять лет!). Лабораторией Э. Блекберн разработан коммерческий тест для определения «биологического возраста» людей на основании длины теломер.

Любопытно, что у мышей очень длинные теломеры (50–40 т.н.п., по сравнению с 10–15 т.н.п. у человека). У некоторых линий лабораторных мышей длина теломер достигает 150 т.н.п. Более того, у мышей теломераза всегда активна, что не дает теломерам укорачиваться. Однако это, как всем известно, не делает мышей бессмертными. Мало того: у них опухоли развиваются намного чаще, чем у людей, что позволяет предположить, что укорачивание теломер как механизм защиты от опухолей у мышей не работает .

При сравнении длины теломер и теломеразной активности у разных млекопитающих оказалось, что виды, для которых характерно репликативное старение клеток, имеют большую продолжительность жизни и большой вес. Это, например, киты, продолжительность жизни которых может достигать 200 лет. Таким организмам репликативное старение просто необходимо, поскольку слишком большое число делений порождает множество мутаций, с которыми необходимо как-то бороться. Предположительно, репликативное старение и есть такой механизм борьбы, который сопровождается к тому же репрессией теломеразы .

Старение диференцированных клеток происходит иначе. Стареют и нейроны, и кардиомиоциты, а ведь они не делятся! Например, в них накапливается липофусцин - старческий пигмент, который нарушает функционирование клеток и запускает апоптоз. В клетках печени и селезенки с возрастом накапливается жир.

Связь репликативного старения клеток со старением организма, строго говоря, не доказана, но возрастная патология сопровождается и старением клеток (рис. 4). Злокачественные новообразования пожилого возраста в большинстве своем связаны с обновляемыми тканями. Онкологические заболевания в развитых странах - одна из основных причин заболеваемости и смертности, причем независимым фактором риска раковых заболеваний является просто... возраст. Число смертей от опухолевых заболеваний увеличивается с возрастом по экспоненте, так же как и общая смертность. Это говорит нам, что между старением и канцерогенезом существует фундаментальная связь.

Рисунок 4. Гистохимически окрашенные на наличие β-галактозидазной активности фибробласты человека линии WI-38. A - молодые; B - старые (сенесцентные).

Теломераза - фермент, который был предсказан

В организме должен существовать механизм, компенсирующий укорочение теломер, - такое предположение сделал А.М. Оловников . Действительно, в 1984 г. такой фермент был открыт Кэрол Грейдер и назван теломеразой . Теломераза (рис. 5) - это обратная транскриптаза, которая увеличивает длину теломер, компенсируя их недорепликацию. В 2009 году Э. Блэкберн, К. Грэйдер и Д. Шостак за открытие этого фермента и цикл работ по изучению теломер и теломеразы была присуждена Нобелевская премия (см: «„Нестареющая“ Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе » ).

Рисунок 5. Теломераза содержит каталитический компонент (обратную транскриптазу ТERT), теломеразную РНК (hTR или TERC), содержащую две копии теломерного повтора и являющуюся матрицей для синтеза теломеров, и белок дискерин.

По данным Э. Блекберн, теломераза участвует в регуляции активности примерно 70 генов. Теломераза активна в зародышевых и эмбриональных тканях, в стволовых и пролиферирующих клетках. Ее обнаруживают в 90% раковых опухолей, что обеспечивает неудержимое размножение раковых клеток. В настоящее время среди препаратов, которые используют для лечения рака, есть и ингибитор теломеразы. Но в большинстве соматических клеток взрослого организма теломераза не активна.

В состояние сенесценции клетку могут привести многие стимулы - дисфункция теломер, повреждения ДНК, причиной которых могут быть мутагенные воздействия окружающей среды, эндогенные процессы, сильные митогенные сигналы (сверхэкспрессия онкогенов Ras, Raf, Mek, Mos, E2F-1 и др.), нарушения хроматина, стрессы и др. Фактически, клетки перестают делиться - становятся сенесцентными - в ответ на потенциально вызывающие рак события.

Страж генома

Дисфункция теломер, которая происходит при их укорачивании либо нарушении работы шелтерина, активирует белок р53 . Этот транскрипционный фактор приводит клетку в состояние сенесценции, либо вызывает апоптоз . При отсутствии р53 развивается нестабильность хромосом, характерная для карцином человека. Мутации в белке р53 обнаруживаются в 50% аденокарцином груди и в 40–60% случаев колоректальной аденокарциномы. Поэтому p53 зачастую называют «стражем генома».

Теломераза реактивируется в большинстве опухолей эпителиального происхождения, которые характерны для пожилых людей. Считается, что реактивация теломеразы - важный этап злокачественных процессов, поскольку это позволяет раковым клеткам «не обращать внимания» на лимит Хейфлика. Дисфункция теломер способствует хромосомным слияниям и аберрациям, что в отсутствии p53 чаще всего приводит к злокачественным новообразованиям.

О молекулярных механизмах старения клеток

Рисунок 6. Схема клеточного цикла. Клеточный цикл подразделяют на четыре стадии: 1. G1 (предсинтетическая) - период, когда клетка готовится к репликации ДНК. В этой стадии может произойти остановка клеточного цикла в случае обнаружения повреждений ДНК (на время репарации). Если обнаруживаются ошибки в репликации ДНК, и они не могут быть исправлены репарацией, клетка не переходит на стадию S. 2. S (cинтетическая) - когда происходит репликация ДНК. 3. G2 (постсинтетическая) - подготовка клетки к митозу, когда происходит проверка точности репликации ДНК; если обнаружены недореплицированные фрагменты или другие нарушения в синтезе, переход на следующую стадию (митоз) не происходит. 4. М (митоз) - формирование клеточного веретена, сегрегация (расхождение хромосом) и формирование двух дочерних клеток (собственно деление).

Чтобы были понятны молекулярные механизмы перехода клетки в состояние сенесцентности, я напомню вам, как происходит деление клетки.

Процесс размножения клеток называют пролиферацией . Время существования клетки от деления до деления именуют клеточным циклом . Процесс пролиферации регулируется как самой клеткой - аутокринными ростовыми факторами, - так и ее микроокружением - паракринными сигналами.

Активация пролиферации происходит через клеточную мембрану, в которой присутствуют рецепторы, воспринимающие митогенные сигналы - это в основном ростовые факторы и межклеточные контактные сигналы. Ростовые факторы обычно имеют пептидную природу (к настоящему времени их известно около 100). Это, например, фактор роста тромбоцитов, который участвует в тромбообразовании и заживлении ран, эпителиальный фактор роста, различные цитокины - интерлейкины, фактор некроза опухолей, колониестимулирующие факторы и т.д. После активации пролиферации клетка выходит из фазы покоя G0 и начинается клеточный цикл (рис. 6).

Клеточный цикл регулируется циклин-зависимыми киназами , разными для каждой стадии клеточного цикла. Они активируются циклинами и инактивируются рядом ингибиторов. Цель такой сложной регуляции - обеспечить синтез ДНК с как можно меньшим числом ошибок, чтобы и дочерние клетки имели абсолютно идентичный наследственный материал. Проверка правильности копирования ДНК осуществляется в четырех «контрольных точках» цикла: если обнаруживаются ошибки, то клеточный цикл останавливается, и включается репарация ДНК . Если нарушения структуры ДНК удается исправить - клеточный цикл продолжается. Если нет - клетке лучше «покончить с собой» (путем апоптоза), чтобы избежать вероятности превращения в раковую.

Молекулярные механизмы, приводящие к необратимой остановке клеточного цикла, контролируются генами-супрессорами опухолей, среди которых p53 и pRB, связанные с ингибиторами циклин-зависимых киназ. Супрессию клеточного цикла в фазе G1 осуществляет белок p53, действующий через ингибитор циклин-зависимой киназы р21. Транскрипционный фактор р53 активируется при повреждениях ДНК, и функция его заключается в удалении из пула реплицирующихся клеток тех, которые являются потенциально онкогенными (отсюда и прозвище р53 - «страж генома»). Данное представление подтверждается тем фактом, что мутации р53 обнаруживают в ~50% случаев злокачественных опохолей. Другое проявление активности р53 связано с апоптозом наиболее поврежденных клеток.

Сенесценция клеток и возраст-зависимые заболевания

Рисунок 7. Взаимосвязь между старением клеток и старением организма.

Сенесцентные клетки накапливаются с возрастом и способствуют возрастным заболеваниям. Они снижают пролиферативный потенциал ткани и истощают пул стволовых клеток, что приводит к дегенеративным нарушениям ткани и снижает способность к регенерации и обновлению.

Сенесцентные клетки характеризуются специфической экспрессией генов: они секретируют воспалительные цитокины и металлопротеиназы, разрушающие межклеточный матрикс. Получается, что старые клетки обеспечивают вялотекущее старческое воспаление, а накопление старых фибробластов в коже служит причиной возрастного снижения способности к заживлению ран (рис. 7). Старые клетки также стимулируют пролиферацию и малигнизацию близлежащих предраковых клеток, благодаря секреции эпителиального фактора роста .

Сенесцентные клетки накапливаются во многих тканях человека, присутствуют в атеросклеротических бляшках, в язвах кожи, в пораженных артритом суставах, а также в доброкачественных и пренеопластических гиперпролиферативных поражениях простаты и печени. При облучении раковых опухолей некоторые клетки также переходят в состояние сенесценции, тем самым обеспечивая рецидивы заболевания.

Таким образом, клеточное старение демонстрирует эффект отрицательной плейотропии, суть которого состоит в том, что хорошее для молодого организма, может стать плохим для старого. Самый яркий пример - процессы воспаления. Выраженная реакция воспаления способствует быстрому выздоровлению молодого организма при инфекционных заболеваниях. В пожилом же возрасте активные воспалительные процессы приводят к возрастным заболеваниям. Сейчас принято считать, что воспаление играет определяющую роль практически при всех возраст-зависимых заболеваниях, начиная с нейродегенеративных.

Клеточное старение - явление, которое обычно связывают с потерей способности клетки к делению (предел Хейфлика). Этот процесс также называется репликативным старением. В русскоязычной литературе под термином клеточное старение ещё понимают снижение функциональной активности клеток по мере увеличения их возраста.

Стареющие клетки могут долгое время оставаться жизнеспособными. Нередко после остановки деления и торможения клеточного цикла у них не наступает программируемой клеточной гибели . Обычно они уничтожаются клетками иммунной системы . С возрастом в организме происходит накопление старых клеток, вероятно, вследствие ухудшения выполнения иммунной системой своих функций.

Стареющие клетки могут оказывать влияние как на соседние клетки, так и на весь организм, выделяя определённые сигнальные молекулы. Влияние это разнообразно, изучено недостаточно и, в общем, скорее отрицательно . Похоже, что клеточное старение является одним из механизмов старения организма.

Механизм клеточного старения

Укорочение теломер

Следует отметить, что у клеток больных синдромом Хатчинсона - Гилфорда (детская прогерия) предел Хейфлика значительно снижен. Схожая картина наблюдается у больных синдромом Вернера (прогерия взрослых). В этом случае больные нормально доживают до 17-18 лет, но начинают стремительно стареть, перейдя этот рубеж. Теломеры у таких больных нормальной длины, но из-за мутаций их ДНК более чувствительна к разрушению, чем ДНК здорового человека.

Согласно ещё одной модели, у молодых клеток пока ещё длинные теломеры находятся в области гетерохроматина . По мере укорочения теломер область гетерохроматина включает в себя всё больше субтеломерной ДНК, где, возможно, находится некий ген-супрессор, подавляющий программу клеточного старения. Инактивация этого гена путём включения его в область гетерохроматина и приводит к запуску процесса старения .

Роль фосфоинозитид-3-киназы

Ингибирование PI3K в культуре человеческих фибробластов приводит к торможению их пролиферации. Клетки демонстрируют признаки, характерные для стареющих клеток: активацию бета-галактозидазы , повышение экспрессии гена коллагеназы и подавление экспрессии специфического маркера пролиферирующих фибробластов, гена EPC-1 (англ. early population doubling level cDNA 1 ) .

Признаки клеточного старения

Изменение ответа на факторы роста

По мере старения клеток уменьшается их способность реагировать на определённые внешние стимулы. Эффект действия факторов роста , гормонов и других стимулирующих агентов на старые клетки гораздо ниже, чем на молодые, способные к активному делению. Токсины , антибиотики , радиация и тепловой шок, напротив, оказывают на них более сильное воздействие.

Известно, что культура клеток пациентов, страдающих синдромом преждевременного старения, таким как прогерия и синдром Вернера, дает значительно более низкий ответ на стимуляцию инсулином , сывороткой и другими факторами, чем клетки здоровых людей .

Рецепторная система клеток существенно не меняются при старении. Таким образом, снижение клеточного ответа на фактор роста не связано с уменьшением количества их рецепторов.

Остановка клеточного цикла

При старении клеток наблюдается необратимая блокировка клеточного цикла. Точный механизм, мешающий клетке перейти в S-фазу, пока неизвестен. Однако отмечается, что при пролиферативном старении клеток отсутствует экспрессия некоторых генов, обеспечивающих протекание клеточного цикла. В стареющих клетках подавлена экспрессия циклинов , Cdk2 , инсулиноподобного фактора роста 1 (IGF-1) , а также некоторых других факторов. При этом никакие экзогенные факторы, в том числе IGF-1, не могут вывести «старую» клетку из состояния неспособности к делению.

Существует мнение, что апоптоз и переход клеток в стадию покоя являются альтернативной защитной реакцией на действие повреждающих агентов и необходимы для профилактики онкогенной трансформации клеток . Если повреждённая клетка по той или иной причине не переходит к апоптозу или клеточному старению, она может стать злокачественной .

Клеточное старение и рак

Болезни, связанные со старостью разделяются на две большие категории. Первую группу составляют болезни, связанные с утратой функции, в основном, это дегенеративные заболевания (например, болезнь Альцгеймера , болезнь Паркинсона , саркопения , макулодистрофия и т. д.). Вторая группа состоит из болезней, связанных с усилением функции (аденома простаты ,атеросклероз и другие). Наиболее известной и смертоносной из них является рак . Фактором риска для образования злокачественной опухоли являются влияние генетических факторов и окружающей среды, но наиболее значимый из них это фактор зрелого возраста . Вероятность опухолеобразования после 50 лет возрастает почти экспоненциально . Во-первых, это вызвано тем, что с возрастом накапливаются мутации , способствующие онкогенезу. Доказательством этого служит, например, что у людей с мутациями в генах, вызывающими рак , образование опухоли происходит в раннем возрасте. Также генетическая нестабильность (дестабилизация хромосом, обмен сестринских хроматид, анеуплоидия , мутации и амплификации генов , клональная гетерогенность, неопластическая трансформация) может влиять на онкогенез . Во-вторых, накопление стареющих клеток образует среду благоприятную для опухолеобразования. Нормальное тканевое микроокружение может подавить способность мутировавших раковых клеток к размножению и выживанию, поэтому опухолевые клетки часто должны уметь модифицировать окружающую тканевую среду. Однако тканевое микроокружение само может обладать проканцерогенным состоянием независимо от присутствия раковых клеток. Возникновению такого состояния может способствовать возраст . Механизм с помощью которого возраст вызывает состояние, благоприятствующее онкогенезу, является мультифакторным и, до конца, неизученным. Одним из таких факторов является клеточное старение. Например, повреждение или стресс, подвергающий пролиферирующую клетку риску злокачественной трансформации, вызывает клеточное старение, защищая клетки от рака . Это связано с работой p53 и p16INK4a/pRB, являющегося наиболее значимым противоопухолевым механизмом. Следовательно, для онкогенеза необходима генетическая (мутагенная) или эпигенетическая инактивация этого эффективного механизма .

Опухоль может образоваться как из клеток, которые экспрессируют теломеразы (например, стволовые клетки), так и из клеток, которые этого не делают. В клетках, в которых теломеразы отсутствуют, укорочение теломер может вызвать репликативное старение, которое предназначено предотвращать развитие рака . И, наоборот, короткие теломеры могут привести к увеличению генетической нестабильности и, соответственно, к образованию опухоли. А в клетках экспрессирующих теломеразы , её выключение может вызвать генетическую нестабильность .

Однако клеточное старение может вызвать и развитие рака . Сначала эта идея кажется парадоксальной, но эволюционная теория антагонистической плейотропии предусматривает, что биологический процесс может быть как полезным, так и вредным, в зависимости от возраста . Большинство животных развивается в условиях, изобилующих смертельной внешней опасностью (хищники , инфекции , голод и т. д.). В этих условиях пожилая особь представляет собой редкость и поэтому отбор против процессов, которые на поздних этапах жизни способствуют возникновению болезни, является слабым. То есть, они избегают влияния процесса естественного отбора . Таким образом, биологический процесс, который был нужен для развития выносливости у молодого организма (например, подавление опухолеообразования) может нести вред для зрелого организма, (вызывая болезни позднего возраста, включая рак) .

См. также

Литература

Примечания

  1. Fernandes P. B. , Panos C. Wall-less microbial isolate from a human renal biopsy. (англ.) // Journal of clinical microbiology. - 1977. - Vol. 5, no. 1 . - P. 106-107. - PMID 833264 . [исправить]
  2. Campisi J. , d"Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. (англ.) // Nature reviews. Molecular cell biology. - 2007. - Vol. 8, no. 9 . - P. 729-740. - DOI :10.1038/nrm2233 . - PMID 17667954 . [исправить]
  3. Harley C. B. , Futcher A. B. , Greider C. W. Telomeres shorten during ageing of human fibroblasts. (англ.) // Nature. - 1990. - Vol. 345, no. 6274 . - P. 458-460. - DOI :10.1038/345458a0 . - PMID 2342578 . [исправить]
  4. Harley C. B. , Vaziri H. , Counter C. M. , Allsopp R. C. The telomere hypothesis of cellular aging. (англ.) // Experimental gerontology. - 1992. - Vol. 27, no. 4 . - P. 375-382. - PMID 1459213 . [исправить]
  5. Kim N. W. , Piatyszek M. A. , Prowse K. R. , Harley C. B. , West M. D. , Ho P. L. , Coviello G. M. , Wright W. E. , Weinrich S. L. , Shay J. W. Specific association of human telomerase activity with immortal cells and cancer. (англ.) // Science (New York, N.Y.). - 1994. - Vol. 266, no. 5193 . - P. 2011-2015. - PMID 7605428 . [исправить]
  6. Morris J. Z. , Tissenbaum H. A. , Ruvkun G.

Вам также будет интересно:

Гуляш из говядины с подливкой на сковороде Сколько варить гуляш из телятины
Гуляш из телятины делается в большинстве семей, по-моему, достаточно редко. Просто потому,...
Индейка, фаршированная яблоками, сыром и ананасами Как приготовить филе индейки с ананасом
Мясо индейки содержит максимум животного белка и минимум жира, это один из лучших мясных...
Калорийность готовых блюд
Для того чтобы составить сбалансированный рацион следует изучить калорийность используемых...
Котлеты из печени индейки
Печеночные котлеты — простое, вкусное и быстрое в приготовление блюдо. Для печеночных...
Салат с баклажанами и фасолью на зиму: рецепты Салат из баклажан и фасолью
Лето – не только время садово-огородных работ, но и пора сбора, заготовки овощей на зиму....