Сайт о холестерине. Болезни. Атеросклероз. Ожирение. Препараты. Питание

Филлохинон препараты. Витамин К (филлохинон). Воспаление и иммунология

Евгений головихин - программа дополнительного образования детей "самбо"

Акафист «Взыскание погибших» и происхождение иконы Божьей Матери Псалтырь и акафист божией матери взыскание погибших

Поможем храму, где началось «Милосердие Храм цесаревича димитрия при первой градской больнице

Церковь троицы живоначальной, что в листах Храм троицы в листах сухаревская

Селедка под шубой с огурцом — кулинарный рецепт

Пошаговый рецепт приготовления ленивых хачапури из лаваша Самые ленивые хачапури в духовке

Как приготовить пюре: суп-пюре, картофельное, гороховое, овощное

Домашнее мороженое со сгущенкой (без яиц)

Кукурузные палочки с ирисками

Приготовление печеночной колбасы у себя дома

Путассу — рецепты приготовления оригинальных и простых рыбных блюд

Описание калорийности разных сортов сыра

И как выглядят его бывшая жена, красавица-дочь и сын, которым он гордится?

Любовный гороскоп для Овна

E515 Сульфаты калия. Лабораторные методы исследования

Свойства кристаллов, форма и сингония (кристаллографические системы)

Важным свойством кристалла является определенное соответствие между разными гранями - симметрия кристалла. Выделяются следующие элементы симметрии:

1. Плоскости симметрии: разделяют кристалл на две симметричные половины, такие плоскости также называют "зеркалами" симметрии.

2. Оси симметрии: прямые линии, проходящие через центр кристалла. Вращение кристалла вокруг этой оси повторяет форму исходного положения кристалла. Различают оси симметрии 3-го, 4-го и 6-го порядка, что соответствует числу таких позиций при вращении кристалла на 360 o .

3. Центр симметрии: грани кристалла, соответствующие параллельной грани, меняются местами при вращении на 180 o вокруг этого центра. Комбинация этих элементов симметрии и порядков дает 32 класса симметрии для всех кристаллов. Эти классы, в соответствии с их общими свойствами, можно объединить в семь сингонии (кристаллографических систем). По трехмерным осям координат можно определить и оценить позиции граней кристаллов.

Каждый минерал принадлежит к одному классу симметрии, поскольку имеет один тип кристаллической решетки, который его и характеризует. Напротив, минералы, имеющие одинаковый химический состав, могут образовывать кристаллы двух и более классов симметрии. Такое явление называется полиморфизмом. Есть не единичные примеры полиморфизма: алмаз и графит, кальцит и арагонит, пирит и марказит, кварц, тридимит и кристобалит; рутил, анатаз (он же октаэдрит) и брукит.

СИНГОНИИ (КРИСТАЛЛОГРАФИЧЕСКИЕ СИСТЕМЫ) . Все формы кристаллов образуют 7 сингонии (кубическую, тетрагональную, гексагональную, тригональную, ромбическую, моноклинную, триклинную). Диагностическими признаками сингонии являются кристаллографические оси и углы, образуемые этими осями.

В триклинной сингонии присутствует минимальное число элементов симметрии. За ней в порядке усложнения следуют моноклинная, ромбическая, тетрагональная, тригональная, гексагональная и кубическая сингонии.

Кубическая сингония . Все три оси имеют равную длину и расположены перпендикулярно друг другу. Типичные формы кристаллов: куб, октаэдр, ромбододекаэдр, пентагондодекаэдр, тетрагон-триоктаэдр, гексаоктаэдр.

Тетрагональная сингония . Три оси расположены перпендикулярно друг другу, две оси имеют одинаковую длину, третья (главная ось) либо короче, либо длиннее. Типичные формы кристаллов - призмы, пирамиды, тетрагоны, трапецоэдры и бипирамиды.

Гексагональная сингония . Третья и четвертая оси расположены наклонно к плоскости, имеют равную длину и пересекаются под углом 120 o . Четвертая ось, отличающаяся от остальных по размеру, расположена перпендикулярно к другим. И оси и углы по расположению аналогичны предыдущей сингонии, но элементы симметрии весьма разнообразны. Типичные формы кристаллов - трехгранные призмы, пирамиды, ромбоэдры и скаленоэдры.

Ромбическая сингония . Характерны три оси, перпендикулярные друг другу. Типичные кристаллические формы - базальные пинакоиды, ромбические призмы, ромбические пирамиды и бипирамиды.

Моноклинная сингония . Три оси разной длины, вторая перпендикулярна другим, третья находится под острым углом к первой. Типичные формы кристаллов - пинакоиды, призмы с кососрезанными гранями.

Триклинная сингония . Все три оси имеют разную длину и пересекаются под острыми углами. Типичные формы - моноэдры и пинакоиды.

Форма и рост кристаллов . Кристаллы, принадлежащие к одному минеральному виду, имеют схожий внешний вид. Кристалл поэтому можно охарактеризовать как сочетание внешних параметров (граней, углов, осей). Но относительный размер этих параметров довольно разный. Следовательно, кристалл может менять свой облик (чтобы не сказать внешность) в зависимости от степени развития тех или иных форм. Например, пирамидальный облик, где все грани сходятся, столбчатый (в совершенной призме), таблитчатый, листоватый или глобулярный.

Два кристалла, имеющих то же сочетание внешних параметров, могут иметь разный вид. Сочетание это зависит от химического состава среды кристаллизации и других условий формирования, к которым относятся температура, давление, скорость кристаллизации вещества и т. д. В природе изредка встречаются правильные кристаллы, которые формировались в благоприятных условиях - это, например, гипс в глинистой среде или минералы на стенках жеоды. Грани таких кристаллов хорошо развиты. Наоборот, кристаллы, образовавшиеся в изменчивых или неблагоприятных условиях, часто бывают деформированы.

АГРЕГАТЫ . Часто встречаются кристаллы, которым не хватало пространства для роста. Эти кристаллы срастались с другими, образуя неправильные массы и агрегаты. В свободном пространстве среди горных пород кристаллы развивались совместно, образуя друзы, а в пустотах - жеоды. По своему строению такие агрегаты весьма разнообразны. В мелких трещинах известняков встречаются образования, напоминающие окаменевший папоротник. Их называют дендритами, сформировавшимися в результате образования оксидов и гидрооксидов марганца и железа под воздействием растворов, циркулировавших в этих трещинах. Следовательно, дендриты никогда не образуются одновременно с органическими остатками.

Двойники . При формировании кристаллов часто образуются двойники, когда два кристалла одного минерального вида срастаются друг с другом по определенным правилам. Двойники часто представляют собой индивидов, сросшихся под углом. Нередко проявляется псевдосимметрия - несколько кристаллов, относящихся к низшему классу симметрии, срастаются, образуя индивиды с псевдосимметрией более высокого порядка. Так, арагонит, относящийся к ромбической сингонии, часто образует двойниковые призмы с гексагональной псевдосимметрией. На поверхности таких срастаний наблюдается тонкая штриховка, образованная линиями двойникования.

ПОВЕРХНОСТЬ КРИСТАЛЛОВ . Как уже сказано, плоские поверхности редко бывают гладкими. Довольно часто на них наблюдается штриховка, полосчатость или бороздчатость. Эти характерные признаки помогают при определении многих минералов - пирита, кварца, гипса, турмалина.

ПСЕВДОМОРФОЗЫ . Псевдоморфозы - это кристаллы, имеющие форму другого кристалла. Например, встречается лимонит в форме кристаллов пирита. Псевдоморфозы образуются при полном химическом замещении одного минерала другим с сохранением формы предыдущего.


Формы агрегатов кристаллов могут быть очень разнообразны. На фото - лучистый агрегат натролита.
Образец гипса со сдвойникованными кристаллами в виде креста.

Физические и химические свойства. Не только внешняя форма и симметрия кристалла определяются законами кристаллографии и расположением атомов - это относится и к физическим свойствам минерала, которые могут быть разными в различных направлениях. Например, слюда может разделяться на параллельные пластинки только в одном направлении, поэтому ее кристаллы анизотропны. Аморфные вещества одинаковы по всем направлениям, и поэтому изотропны. Такие качества также важны для диагностики этих минералов.

Плотность. Плотность (удельный вес) минералов представляет собой отношение их веса к весу такого же объема воды. Определение удельного веса является важным средством диагностики. Преобладают минералы с плотностью 2-4. Упрощенная оценка веса поможет при практической диагностике: легкие минералы имеют вес от 1 до 2, минералы средней плотности - от 2 до 4, тяжелые минералы от 4 до 6, очень тяжелые - более 6.

МЕХАНИЧЕСКИЕ СВОЙСТВА . К ним относятся твердость, спайность, поверхность скола, вязкость. Эти свойства зависят от кристаллической структуры и используются с целью выбора методики диагностирования.

ТВЕРДОСТЬ . Довольно легко поцарапать кристалл кальцита кончиком ножа, но сделать это с кристаллом кварца вряд ли получится - лезвие скользнет по камню, не оставив царапины. Значит, твердость у этих двух минералов различная.

Твердостью по отношению к царапанью называют сопротивление кристалла попытке внешней деформации поверхности, другими словами, сопротивление механической деформации извне. Фридрих Моос (1773-1839) предложил относительную шкалу твердости из степеней, где каждый минерал имеет твердость к процарапыванию выше, чем предыдущий: 1. Тальк. 2. Гипс. 3. Кальцит. 4. Флюорит. 5. Апатит. 6. Полевой шпат. 7. Кварц. 8. Топаз. 9. Корунд. 10. Алмаз. Все эти значения применимы только к свежим, не подвергшимся выветриванию образцам.

Можно оценить твердость упрощенным способом. Минералы с твердостью 1 легко царапаются ногтем; при этом они жирные на ощупь. Поверхность минералов с твердостью 2 также царапается ногтем. Медная проволока или кусочек меди царапает минералы с твердостью 3. Кончик перочинного ножа царапает минералы до твердости 5; хороший новый напильник - кварц. Минералы с твердостью более 6 царапают стекло (твердость 5). От 6 до 8 не берет даже хороший напильник; при таких попытках летят искры. Чтобы определить твердость, испытывают образцы с возрастающей твердостью, пока они поддаются; затем берут образец, который, очевидно, еще тверже. Противоположным образом надо действовать, если необходимо определить твердость минерала, окруженного породой, твердость которой ниже, чем у минерала, нужного для образца.


Тальк и алмаз, два минерала, занимающие крайние позиции в шкале твердости Мооса.

Легко сделать вывод на основании того, скользит ли минерал по поверхности другого или царапает ее с легким скрипом. Могут наблюдаться следующие случаи:
1. Твердость одинакова, если образец и минерал взаимно не царапают друг друга.
2. Возможно, что оба минерала друг друга царапают, поскольку верхушки и выступы кристалла могут быть тверже, чем грани или плоскости спайности. Поэтому можно поцарапать грань кристалла гипса или плоскость его спайности вершиной другого кристалла гипса.
3. Минерал царапает первый образец, а на нем делает царапину образец более высокого класса твердости. Его твердость находится посредине между используемыми для сравнения образцами, и ее можно оценить в полкласса.

Несмотря на очевидную простоту такого определения твердости, многие факторы могут привести к ложному результату. Например, возьмем минерал, свойства которого сильно разнятся по разным направлениям, как у дистена (кианита): по вертикали твердость 4-4,5, и кончик ножа оставляет четкий след, но в перпендикулярном направлении твердость 6-7 и ножом минерал вообще не царапается. Происхождение названия этого минерала связано с этой особенностью и подчеркивает ее весьма выразительно. Поэтому необходимо проводить испытание твердости по разным направлениям.

Некоторые агрегаты имеют более высокую твердость, чем те компоненты (кристаллы или зерна), из которых они состоят; может оказаться, что плотный обломок гипса трудно поцарапать ногтем. Наоборот, некоторые пористые агрегаты менее твердые, что объясняется наличием пустот между гранулами. Поэтому мел царапается ногтем, хотя состоит из кристаллов кальцита с твердостью 3. Другой источник ошибок - минералы, испытавшие какие-то изменения. Оценить твердость порошкообразных, выветрелых образцов или агрегатов чешуйчатого и игольчатого строения простыми средствами невозможно. В таких случаях лучше использовать другие методы.

Спайность . Ударом молотка или нажатием ножа кристаллы по плоскостям спайности кристалл иногда можно разделить на пластинки. Спайность проявляется по плоскостям с минимальным сцеплением. Многие минералы обладают спайностью по нескольким направлениям: галит и галенит - параллельно граням куба; флюорит - по граням октаэдра, кальцит - ромбоэдра. Кристалл слюды-мусковита; хорошо видны плоскости спайности (на фото справа).

Такие минералы, как слюда и гипс, имеют совершенную спайность в одном направлении, а в других направлениях спайность несовершенная или вообще отсутствует. При тщательном наблюдении можно заметить внутри прозрачных кристаллов тончайшие плоскости спайности по хорошо выраженным кристаллографическим направлениям.

Поверхность излома . Многие минералы, например кварц и опал, не имеют спайности ни в одном направлении. Их основная масса раскалывается на неправильные куски. Поверхность скола можно описать как плоскую, неровную, раковистую, полураковистую, шероховатую. Металлы и крепкие минералы имеют шероховатую поверхность скола. Это свойство может служить диагностическим признаком.

Другие механические свойства . Некоторые минералы (пирит, кварц, опал) раскалываются на куски под ударом молотка - они являются хрупкими. Другие, наоборот, превращаются в порошок, не давая обломков.

Ковкие минералы можно расплющить, как, например, чистые самородные металлы. Они не образуют ни порошка, ни обломков. Тонкие пластинки слюды можно согнуть, как фанеру. После прекращения воздействия они вернутся в исходное состояние - это свойство эластичности. Другие, как гипс и пирит, можно согнуть, но они сохранят деформированное состояние - это свойство гибкости. Такие признаки позволяют распознавать сходные минералы - например, отличить эластичную слюду от гибкого хлорита.

Окраска . Некоторые минералы имеют настолько чистый и красивый цвет, что их используют как краски или лаки. Часто их названия применяют в обиходной речи: изумрудно-зеленый, рубиново-красный, бирюзовый, аметистовый и др. Окраска минералов, один из основных диагностических признаков, не является ни постоянной, ни вечной.

Есть ряд минералов, у которых окраска постоянная - малахит всегда зеленый, графит - черный, самородная сера - желтая. Такие распространенные минералы, как кварц (горный хрусталь), кальцит, галит (поваренная соль), бесцветны, когда в них нет примесей. Однако наличие последних вызывает окраску, и мы знаем голубую соль, желтый, розовый, фиолетовый и коричневый кварц. Флюорит обладает целой гаммой окрасок.

Присутствие элементов-примесей в химической формуле минерала приводит к весьма специфической окраске. На этой фотографии изображен зеленый кварц (празем), в чистом виде совершенно бесцветный и прозрачный.

Турмалин, апатит и берилл имеют различные цвета. Окраска не является несомненным диагностическим признаком минералов, обладающих различными оттенками. Цвет минерала зависит также от наличия элементов-примесей, входящих в кристаллическую решетку, а также различных пигментов, загрязнений, включений в кристалле-хозяине. Иногда он может быть связан с радиоактивным облучением. У некоторых минералов цвет меняется в зависимости от освещения. Так, александрит при дневном свете зеленый, а при искусственном освещении - фиолетовый.

У некоторых минералов изменяется интенсивность окраски при повороте граней кристалла относительно света. Цвет кристалла кордиерита при вращении меняется от голубого до желтого. Причина такого явления состоит в том, что подобные кристаллы, называемые плеохроичными, по-разному поглощают свет в зависимости от направления луча.

Цвет некоторых минералов может изменяться также при наличии пленки, имеющей другую окраску. Эти минералы в результате окисления покрываются налетом, который, возможно, как-то смягчает действие солнечного или искусственного света. Некоторые драгоценные камни теряют свою окраску, если в течение какого-то периода подвергаются солнечному освещению: изумруд теряет свой глубокий зеленый цвет, аметист и розовый кварц бледнеют.

Многие минералы, содержащие серебро (например, пираргирит и прустит), также чувствительны к солнечным лучам (инсоляции). Апатит под воздействием инсоляции покрывается черной вуалью. Коллекционерам следует предохранять такие минералы от воздействия света. Красный цвет реальгара на солнце переходит в золотисто-желтый. Подобные изменения окраски совершаются в природе очень медленно, но можно искусственно очень быстро изменить цвет минерала, ускорив процессы, происходящие в природе. Например, можно при нагревании получить желтый цитрин из фиолетового аметиста; алмазы, рубины и сапфиры искусственно "улучшают" с помощью радиоактивного облучения и ультрафиолетовых лучей. Горный хрусталь благодаря сильному облучению превращается в дымчатый кварц. Агат, если его серый цвет выглядит не слишком привлекательно, можно перекрасить, опустив в кипящий раствор обыкновенного анилинового красителя для тканей.

ЦВЕТ ПОРОШКА (ЧЕРТА) . Цвет черты определяется при трении о шероховатую поверхность неглазированного фарфора. При этом нужно не забывать, что фарфор имеет твердость 6-6,5 по шкале Мооса, и минералы с большей твердостью оставят только белый порошок растертого фарфора. Всегда можно получить порошок в ступке. Окрашенные минералы всегда дают более светлую черту, неокрашенные и белые - белую. Обычно белая или серая черта наблюдается у минералов, окрашенных искусственно, или с загрязнениями и пигментом. Часто она как бы затуманена, так как в разбавленной окраске ее интенсивность обуславливается концентрацией красящего вещества. Цвет черты минералов с металлическим блеском отличается от их собственного цвета. Желтый пирит дает зеленовато-черную черту; черный гематит - вишнево-красную, черный вольфрамит - коричневую, а касситерит - почти неокрашенную черту. Цветная черта позволяет быстрее и легче определить по ней минерал, чем черта разбавленного цвета или бесцветная.

БЛЕСК . Как и цвет, это эффективный метод определения минерала. Блеск зависит оттого, как свет отражается и преломляется на поверхности кристалла. Различают минералы с металлическим и неметаллическим блеском. Если их различить не удается, можно говорить о полуметаллическом блеске. Непрозрачные минералы металлов (пирит, галенит) обладают большой отражательной способностью и имеют металлический блеск. Для другой важной группы минералов (цинковая обманка, касситерит, рутил и др.) определить блеск затруднительно. Для минералов с неметаллическим блеском различают следующие категории в соответствии с интенсивностью и свойствами блеска:

1. Алмазный блеск, как у алмаза.
2. Стеклянный блеск.
3. Жирный блеск.
4. Тусклый блеск (у минералов с плохой отражательной способностью).

Блеск может быть связан со строением агрегата и направлением господствующей спайности. Минералы, имеющие тонкослоистое сложение, имеют перламутровый блеск.

ПРОЗРАЧНОСТЬ . Прозрачность минерала - качество, которое отличается большой изменчивостью: непрозрачный минерал можно легко отнести к прозрачным. Основная часть бесцветных кристаллов (горный хрусталь, галит, топаз) относятся к этой группе. Прозрачность зависит от строения минерала - некоторые агрегаты и мелкие зерна гипса и слюды кажутся непрозрачными или просвечивающими, в то время как кристаллы этих минералов прозрачны. Но если рассматривать с лупой маленькие гранулы и агрегаты, можно видеть, что они прозрачны.

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ . Показатель преломления представляет собой важную оптическую константу минерала. Она измеряется с помощью специальной аппаратуры. Когда луч света проникает внутрь анизотропного кристалла, происходит преломление луча. Такое двойное лучепреломление создает впечатление, что существует виртуальный второй объект параллельно изучаемому кристаллу. Подобное явление можно наблюдать через прозрачный кристалл кальцита.

ЛЮМИНЕСЦЕНЦИЯ . Некоторые минералы, такие как шеелит и виллемит, облучаемые ультрафиолетовыми лучами, светятся специфическим светом, что в ряде случаев может некоторое время продолжаться. Флюорит при нагревании в темном месте светится - это явление называется термолюминесценция. При трении некоторых минералов возникает другой тип свечения - триболюминесценция. Эти разные типы люминесценции являются характеристикой, позволяющей легко диагностировать ряд минералов.

ТЕПЛОПРОВОДНОСТЬ . Если взять в руку кусок янтаря и кусок меди, покажется, что один из них теплее другого. Это впечатление обусловлено различной теплопроводностью данных минералов. Так можно различить стеклянные имитации драгоценных камней; для этого нужно приложить камушек к щеке, где кожа более чувствительна к теплу.

Следующие свойства можно определить по тому, какие ощущения они вызывают у человека. На ощупь графит и тальк кажутся гладкими, а гипс и каолин - сухими и шероховатыми. Растворимые в воде минералы, такие как галит, сильвинит, эпсомит, имеют специфический вкус - соленый, горький, кислый. Некоторые минералы (сера, арсенопирит и флюорит) обладают легко распознаваемым запахом, который возникает сразу при ударе по образцу.

МАГНЕТИЗМ . Фрагменты или порошок некоторых минералов, в основном имеющих повышенное содержание железа, можно отличить от других сходных минералов с помощью магнита. Магнетит и пирротин сильно магнитны и притягивают железные опилки. Некоторые минералы, например гематит, приобретают магнитные свойства, если их раскалить докрасна.

ХИМИЧЕСКИЕ СВОЙСТВА . Определение минералов на основе их химических свойств требует, помимо специального оборудования, обширных знаний в области аналитической химии.

Есть один простой метод для определения карбонатов, доступный непрофессионалам - действие слабого раствора соляной кислоты (вместо нее можно брать обыкновенный столовый уксус - разбавленную уксусную кислоту, которая есть на кухне). Таким способом можно легко отличить бесцветный образец кальцита от белого гипса - нужно капнуть на образец кислоты. Гипс на это не реагирует, а кальцит "вскипает" при выделении углекислого газа.

1 .. 81 > .. >> Следующая
^ГМТД (гексаметилентрипероксиддиамин) - бесцветные ромбические кристаллы, в массе белые. Плохо растворим в воде, спирте и ацетоне. При контакте (особенно
В
усн2-о-о-сн2ч
N-CH2-0-0-CH2-N во влажном состоянии) вызывает коррозию ме- ^СН -О-О-СН таллов. Не гигроскопичен. Летуч при хранении 2
на открытом воздухе. Устойчив на свету. Инициирующее ВВ. Применяется в качестве детонаторного состава.
Циклический дипероксид мочевины со сложным названием тетраметилендипероксиддикарбамид (ТМДД) по взрывчатым свойствам вполне напоминает ГМТД, хотя и отличается большей стабильностью.
Чтобы получить это интересное вещество, достаточно смешать 8 мл формалина с 13 мл пергидроля и в этой жидкости растворить 3 г мочевины. Реакционную массу охлаж-/Ч дают до 5°С на ледяной бане и осторожно по каплям при 1суг\ тщательном перемешивании добавляют 5 мл 50% серной
©кислоты, не допуская поднятия температуры выше 20°С. Через час ёмкость с реагентами переносят в холодильник, а через сутки отфильтровывают выпавший осадок. Промы-^ | воют его содовым раствором, затем холодной водой и сушат при температуре не превышающей 40-45°С. /Тетраметилендипероксиддикарбамид (ТМДД) - бесцветное кристаллическое вещество, весьма устойчивое при обычных условиях
Вхранения. Не гигроскопичен. Детонирует при ударе, трении и нагревании (особенно в контак- \ "\ у
те с огнём). Инициирующее ВВ п п п ^"
для детонаторов.
/сн2-о-о-сн2х
H2N-C-N N-C-NH2
о чснго-о-сн/ 6
Глава 13. Секретное оружие блондинок
237
Многие органические пероксиды служат инициаторами цепных гемолитических реакций и применяются в синтезе полимеров. Учитывая высокую чувствительность к механическому воздействию и нагреванию, чаще их хранят в растворах, на холоде, да ещё и в темноте, не забывая, что при низкой температуре повышается вероятность накопления взрывчатых продуктов, а кристаллизация таких растворов многократно увеличивает опасность.
Свет катализирует разложение пероксидов. В этом несложно убедиться. Достаточно выставить на солнечный свет пробирку с А< 3% перекисью водорода, содержащей каталитическую при-* * месь жёлтой или красной кровяной соли. Начнётся бурное разложение, не прекращающееся в темноте. Подобный приём иногда используют шпионы и разведчики, обрабатывая пероксидами секретное донесение, написанное в темноте. После вскрытия конверта и «засветки» такое письмо обугливается.
Представляете, что будет, если в таком виде сдать контрольную работу или дневник для записи отметки по поведению?
л Если Вы тоже решитесь написать подобное письмо, бумагу /!\ для него предварительно обработайте из распылителя в темноте 5% спиртовым раствором перекиси.бензоила и
дайте ей высохнуть в этих же условиях. Чтобы не промахнуться с автографом, може-
те воспользоваться для подсветки красным фонарём для фотодела. Готовое письмо вложите в чёрный конверт (например, из-под фотобумаги) и можете отправлять его адресату. После вскрытия на свету уже через короткое время письмо почернеет и превратится в пепел.
238
Часть 1. Опасное знакомство
Пероксид бензоила для этих целей нетрудно синтезировать самому, тем более, что он не так опасен, и в качестве самостоятельного ВВ практически не применяется, чего не скажешь о пиротехнических композициях на его основе. Впервые он получен химиком Броди (1859).
К охлаждённому раствору 2,5 г гидроксида натрия в 20 мл воды на ледяной бане (-5°С) приливают при помешивании 6 мл пергидроля и по каплям так, чтобы температура не пре-ZfS. вышала 0-1°С, добавляют под тягой 5 мл хлористого бензоила. Выпавший в течение часа кристаллический осадок отфильтровывают и для лучшей очистки кристаллизуют из кипящего этанола либо осаждают метанолом из хлорофор-менного раствора. Сушат отфильтрованные кристаллы при комнатной температуре.
Пероксид бензоила в пиротехнике часто применяют для снижения температуры вспышки инициирующих ВВ. Так, добавка этого продукта к гремучей ртути (2:3, сост. 794) позволяет снизить силу тока для её воспламенения электрозапалом почти на четверть.
Смесь тиосульфата свинца, бертолетовой соли и пероксида бензоила (1:1:1, сост. 387, табл. 22) используют в электрозапалах. Температура её детонации всего 112°С.
/а-Беизодиазобеизила гидропероксид - игловидные кристаллы канаре-ечно-желтого цвета. Чувствителен к действию /=\ /=\
света. При нагревании выше 65°С разлагается со { у-N=NC-^ у взрывом. К искре и ударам менее восприимчив. ООН
В контакте с концентрированной серной либо
азотной кислотой детонирует. Получают, пропуская кислород через бензольный раствор фенилгидразония бензальдегида, с последующим осаждением лигроином. По мощности взрыва превосходит тротил.
/Пероксид бензоила (дибеизоил) (С6Н5СО)202 - бесцветные ромбы из эфира или иглы из этанола; d= 1,334; tnjl 106-108°С; растворим в хлороформе, этаноле, эфире, бензоле и сероуглероде; трудно растворим в воде. Период его полураспада Ту, 1 час при 91°С и 10 часов при 73°С, при комнатной температуре относительно стабилен. Инициатор полимеризации, отвердитель полиэфирных смол, отбеливатель муки и жиров. Взрывается при нагревании и ударе. Компонент первичных ВВ.

Сульфаты калия (Potassium sulphates, Potassium sulphate, Potassium hydrogen sulphate, sulphate of potash, сульфат калия, гидросульфат калия, E515) — калиевая соль серной кислоты.

Химическая формула K 2 SO 4 . Бесцветные кристаллы, растворимые в воде.

Виды сульфатов калия:

  • (i) сульфат калия (Potassium sulphate);
  • (ii) гидросульфат калия (Potassium hydrogen sulphate).

Основное применение сульфатов калия — удобрение. Также неочищенная соль используется в производстве стекла.

Сульфат калия (пищевая добавка E515) - бесцветные ромбические кристаллы, растворимые в воде, но нерастворимые в растворах гидроксида калия. Очень жесткая и горькая соль. Плавится при температуре 1078 C. Встречается в природе в месторождениях калийных солей, а также содержится в водах соленых озер. Сульфат калия получают обменной реакцией между хлоридом калия и серной кислотой в соответствии с процессом Леблана. Был известен еще с начала 14 века и был изучен Глаубером Бойлом. Химическая формула: K2SO4. Сульфат калия поставляет кислород к клеткам организма и отвечает за общий энергетический баланс. Недостаток этого вещества в организме приводит к потере волос, перхоти, сухости кожи и быстрой утомляемости. Сульфатом калия богаты шпинат, свекла, морская капуста, масло из пророщенных зерен пшеницы, миндаль, сыр, нежирная говядина, апельсины, бананы, лимоны и свежие овощи, покрытые зелеными листьями. В пищевой продукции используется как регулятор кислотности. Другие использования сульфата калия: - является источником бесхлорного калия; - в сельскохозяйственной промышленности, как основной компонент концентрированного удобрения, в состав которого входят водорастворимый калий и сера; такое удобрение особенно эффективно для чувствительных к хлору культур (огурцы, баклажан, перец, морковь); - применяется для получения квасцов; - используется в стекольном производстве; - в производстве красителей, как сульфирующий агент; - в аналитической химии, для перевода труднорастворимых соединений в легкорастворимые.

Будучи признанной безопасной пищевой добавкой, эмульгатор Е515 Сульфаты калия официально разрешен к использованию не только на территории нашего государства, но и в странах ЕС, а также на Украине. Носит этот пищевой эмульгатор и другие названия - калий сернокислый, калиевая соль серной кислоты и Potassium sulfate.

Помимо основных свойств пищевого эмульгатора Е515 Сульфаты калия не менее ценны и другие отличительные способности данной добавки. В частности, он может применяться в качестве регулятора кислотности, заменителя соли и носителя.

В воде соленых озер и месторождениях солей калия встречается данное вещество в естественном виде. К слову сказать, открыто оно было еще 14 столетии и до сих пор успешно применяется в различных сферах жизни человека.

По внешнему виду пищевой эмульгатор Е515 Сульфаты калия можно охарактеризовать как белые или бесцветные кристаллы, а также кристаллический порошок, которому присущ специфический горько-соленый вкус. Определенные физические свойства пищевого эмульгатора Е515 Сульфаты калия обуславливают его хорошую растворимость в воде и практически отсутствие данного качества в присутствии этанола и щелочных концентрированных растворов.

Примечательно то, что сульфаты калия содержатся в большом количестве продуктов питания. В основном его можно найти в свекле, морской капусте, масле из пророщенных зерен пшеницы, миндале, шпинате, сыре, нежирной говядине, лимонах, апельсинах, бананах, а также свежих овощах, которые обычно покрыты зелеными листьями.

В пищевой индустрии его, как правило, используют в качестве заменителя соли. Помимо этого, пищевой эмульгатор Е515 Сульфаты калия может выступать в роли регулятора кислотности при производстве напитков. Дополнительно добавка используется в процессе изготовления жидких дрожжей и ржаных заквасок как питательная среда.

Основное же свое применение сульфаты калия находят в сельском хозяйстве, где вещество является ценным удобрением для дерново-подзолистых почв, которые бедны калием и другими минеральными солями. Кроме того, фигурирует Е515 в производстве красителей и стекла.

Вред пищевого эмульгатора Е515 Сульфаты калия

Как известно, сульфаты калия необходимы организму человека, так как являются немаловажным поставщиком кислорода клеткам. При недостатке данного вещества может наблюдаться потеря волос, появление перхоти, сухость кожи и повышенная утомляемость.

Однако, несмотря на массу положительных качеств, существует и вред пищевого эмульгатора Е515 Сульфаты калия, поэтому обращаться с веществом необходимо с осторожностью. К примеру, его попадание в глаза и на кожные покровы вызывает механическое раздражение и воспаление. При вдыхании порошка также возможно раздражение и воспаление дыхательных путей.

Что касается вреда пищевого эмульгатора Е515 Сульфаты калия при употреблении в пищу, его чрезмерное количество приводит к расстройствам желудка и раздражениям пищеварительного тракта в целом. Кстати сказать, очень редко регулярное употребление добавки в составе продуктов питания может закончиться отравлением всего организма.

Прижигающие свойства нитрата серебра используются в медицине для удаления мелких бородавок и прижигания мелких ранок. Нитрат серебра применяется в альтернативной медицине – гомеопатии, как действующее вещество.

Нитрат серебра это вещество, которое было известно еще в средневековье. Оно имело, широкое распространение и было особенно популярно среди медиков, химиков и алхимиков. Нитрат серебра проник во все языковые культуры цивилизованных стран Азии и Европы. Упоминание о нем есть не только в научной, но в медицинской и художественной литературе. В средние века ляпис часто называли "адским камнем". Такое название ляпис, очевидно, получил из-за своих свойств - прижигать ткани. При прижигании кожи, ляпис вызывает коагуляцию белка и некроз (омертвление) кожной ткани. В беллетристике средневековья, ляпис чаще упоминался как "адский камень" и реже как ляпис.

Основные свойства нитрата серебра (AgNO3)

  • Нитрат серебра (AgNO3), "адский камень" или ляпис это бесцветные ромбические кристаллы.
  • Нитрат серебра (I) это бесцветный белый порошок.
  • Нитрат серебра (I) хорошо растворяется в воде.
  • Нитрат серебра (I) под действием света чернеет и восстанавливается до металлического серебра.
  • Ляпис происходит от итальянского слова lapis, что означает «карандаш», а от латинского слова lapis – «камень».
  • Агрегатное состояние нитрата серебра (I) – твердое.
  • Молярная масса - 169,87 г/моль.
  • Плотность нитрата серебра (I) - 4,352 г/см?.
  • Температура плавления - 209,7 градуса.
  • Температура разложения – свыше 300 градусов.
  • Нитрат серебра (I) растворяется в воде, метиловом спирте, этиловом спирте, ацетоне и в пиридине.
  • Нитрат серебра (I) можно получить растворением металлического серебра в азотной кислоте.
  • Химическая формула поучения нитрата серебра (I): Ag + 2HNO3 = AgNO3 + NO2 + H2O.
  • Есть простой способ получения нитрата серебра (AgNO3) в домашних условиях. Для этого нужно растворить металлическое серебро (Ag) в азотной кислоте (HNO3). Реакция будет идти с образованием бурого газа – диоксида серебра (NO2).
  • Нитрат серебра (I) может быть реактивом на соляную кислоту или соли соляной кислоты, так как, взаимодействуя с ними, образует творожистый осадок , который не растворяется в азотной кислоте.
  • Нитрат серебра (I) при нагревании до температуры 350 градусов, разлагается и выделяет металлическое серебро.
  • Нитрат серебра (I) применяется в медицине, для обеззараживания и прижигания ран.
  • Нитрат серебра (I) используется в пленочной фотографии.
  • Ляпис раньше применяли для удаления угрей, прижигания небольших бородавок, папиллом, мозолей и мелких ран. Сегодня если нет возможности прижигать ткани криотерапией, то есть прижигание сухим льдом или азотом, применяют для лечения давно забытый ляпис.
  • Ляпис может оказывать токсическое действие на организм человека.
  • Известно, что серебро в виде ионов серебра () это высокотоксичное вещество. По своим токсическим свойствам серебро стоит в одном ряду с цианидами и свинцом.
  • Токсичность ляпис проявляет в том, что он очень хорошо растворяется в воде и при этом легко может всасываться желудком и быстро проникать в кровь.
  • Ляпис в своем составе содержит – тяжелый металл, который трудно выводится из организма.
  • Ляпис, имея в своем составе тяжелый металл – серебро, может связывать ферментативные системы организма.
  • Ляпис проявляет токсическое действие, связанное с коагуляцией белка.
  • Ляпис может вызвать бытовое отравление

    Клинические проявления характерные при отравлении ляписом: ожог слизистой оболочки полости рта, пищевода, желудка, понос, падение артериального давления, головокружение, судороги, кашель с обильным выделением мокроты, тошнота, рвота белыми массами и темнеющими на свету, нарушение дыхания, анурия и кома.

    Сульфат калия является неорганическим соединением с химической формулой K2SO4.

    Как пищевая добавка сульфат калия имеет название Е515 и относится к группе эмульгаторов, которые необходимы для создания однородной смеси из несмешиваемых в природе компонентов, например, воды с маслом или воды с жиром. Также Е515 применяется при промышленном производстве продуктов для регулирования кислотности.

    Сульфат калия является жесткой и горькой солью с очень высокой температурой плавления (около 1078°C). Он представляет собой бесцветные ромбические кристаллы, легко растворимые в воде.

    Получение сульфата калия

    Сульфат калия как химическое соединение был известен с начала 14 века благодаря химикам Бойлу, Глауберу и Тахеусу.

    В природе сульфат калия встречается на месторождениях калийных солей. Кроме того, он присутствует в водах соленых озер, однако, в большинстве случаев, с различными примесями. Чистый сульфат калия находится в природе относительно редко. Самым известным его природным источником является минерал арканит в виде белых или прозрачных кристаллов, который встречается в Калифорнии (США).

    Получение сульфата калия возможно из природных минералов, его содержащих. К ним относятся шенит, каинит, леонит, сингенит, глазерит, лангбейнит и полигалит.

    В лабораторной практике для получения сульфата калия используют реакции с оксидом калия, со слабыми или неустойчивыми кислотами и некоторые другие.

    Свойства сульфата калия

    Сульфат калия является необходимым соединением для организма, поскольку он участвует в процессе доставки кислорода к клеткам.

    Нехватка сульфата калия отражается не только на состоянии кожи и волос, но и на общем тонусе организма, что проявляется как быстрая утомляемость.

    В продуктах сульфат калия содержится в морской капусте, шпинате, сыре, свекле, нежирной говядине, бананах, цитрусовых (лимонах и апельсинах), миндале.

    Сульфат калия как химическое соединение небезопасен для организма в случаях:

    • При попадании в глаза и на кожу – возможно механическое раздражение;
    • При проглатывании большого количества сульфата калия – возможно раздражение желудочно-кишечного тракта;
    • При вдыхании соединения – возможно раздражение дыхательных путей.

    Применение сульфата калия в пищевой промышленности

    При промышленном производстве продуктов питания сульфат калия как добавка Е515 чаще всего используется как заменитель соли, а также:

    • Как питательная среда при приготовлении ржаных заквасок и дрожжей жидкой консистенции;
    • Как регулятор кислотности в напитках;
    • Как источник питания минералами.

    Сульфат калия в умеренных количествах полезен для организма. Однако чрезмерное его количество может привести к расстройству желудка, раздражению всего пищеварительного тракта, а в некоторых случаях – к отравлению организма.

    Применение сульфата калия

    Сульфат калия широко применяют в сельском хозяйстве в виде бесхлорного удобрения. Эффективность раствора сульфата калия наиболее высока на дерново-подзолистых и торфяных почвах, которые бедны калием. Также его используют как альтернативу удобрениям с содержание хлора для выращивания табака, картофеля, винограда, льна, цитрусовых.

    На черноземных почвах раствор сульфата калия применят, как правило, под культуры, усваивающие много натрия и калия, среди которых подсолнечник, сахарная свекла, плодовые, различные корнеплоды и овощи.

    Наиболее эффективен раствор сульфата калия в сочетании с азотными и фосфорными удобрениями.

    Также сульфат калия применяют:

    • В фармакологии – в качестве сырья для производства биологически активных добавок;
    • В стекольном производстве.

    Вам также будет интересно:

    Вещи во сне не совсем настоящие
    Сонник старые вещи Всю жизнь человек окружен определенными вещами. Одни из них дороги нам...
    Невзоров а г уроки атеизма
    Чтобы я мог посоветовать верующим? Я бы мог посоветовать им чувствовать себя как можно...
    Столетняя война: причины, ход и последствия Воины времен
столетней войны
    Столетняя война между Англией и Францией самый длительный в истории прошлого военно -...
    Кто правил после Елизаветы Петровны?
    Елизавета Петровна – российская императрица, ставшая последней представительницей монаршей...
    Применение эхинацеи пурпурной в спорте: поддержка иммунитета спортсмена «Эхинацея П»
    1. Иммунитет Иммунитет – способность организма поддерживать гомеостаз (постоянство...